
System: Measurement
Examples
Help Volume
© 1992-2001 Agilent Technologies. All rights reserved.

Measurement Examples

These quick reminders on how to perform common measurements are
grouped by the development phase in which the measurement typically
occurs:

• “Hardware Turn-On” on page 10 — Hardware designers take a loaded first
cut printed-circuit board and verify its basic operation before delivering it
to driver writers and software developers.

• “Firmware Development” on page 143 — Given a printed-circuit board
that has been turned-on, firmware developers create drivers and operating
system calls that control and communicate with the hardware. They
deliver stable hardware with a low-level software interface to application
software developers.

• “Software Development” on page 198 — Given stable hardware and low-
level driver software, software developers verify real-time application
software execution.

• “System Integration” on page 257 — When system problems are
discovered, system integrators determine whether the problem is being
caused by hardware, software, or both. Also, they analyze system
performance.

See Also “Contents” on page 6

“Measurement Tips & Tricks” on page 300

Main System Help (see the Agilent Technologies 16700A/B-Series Logic

Analysis System help volume)

Glossary (see page 311)
2

Contents
Measurement Examples

1 Measurement Examples

Contents 6

Hardware Turn-On 10
Looking at Signal Parameters 11
Looking at Signal Edges, Patterns, and Glitches 16
Measuring Conformance to Specifications 50
Looking at State Events 96
Exercising the Microprocessor (with the Emulation Probe) 136

Firmware Development 143
Testing Boot Code (with the Emulation Probe) 143
Making Driver Development Measurements 155
Making Interrupt Service Routine Measurements 183

Software Development 198
Analyzing Real-Time Software Execution 198
Analyzing Real-Time Variable Access 229
Analyzing Real-Time Memory Usage 250

System Integration 257
Making Cross-Domain Measurements 257
Making System Profile Measurements 282
Isolating Critical Defects 288
 3

Contents
Measurement Tips & Tricks 300
Setting up 16715/16/17/18/19A triggers 300
Setting up triggers in other logic analyzers 302
Use trigger functions for easy measurement set up 305
Modify trigger functions to build new measurements 307
Know how processor execution affects measurements 308
Getting the most out of trace memory 309
If the trigger doesn’t occur as expected 309

Glossary

Index
4

1

Measurement Examples
5

Chapter 1: Measurement Examples
Contents
Contents

Hardware Turn-On Looking at Signal Parameters

• “To make basic oscilloscope measurements” on page 11

Looking at Signal Edges, Patterns, and Glitches

• “To trigger on a stable pattern” on page 16

• “To find edges that are too close or too far” on page 20

• “To find the Nth transition of a signal” on page 24

• “To find when a signal or pattern stops” on page 28

• “To delay capture after a pattern” on page 32

• “To find an edge during a valid pattern” on page 36

• “To find a pattern, an edge, and another pattern” on page 40

• “To find signal glitches” on page 45

Measuring Conformance to Specifications

• “To measure conformance to specs (with the Compare tool)” on
page 51

• “To find setup and hold violations” on page 56

• “To trigger if a pattern doesn't follow an edge” on page 59

• “To verify pulse widths” on page 63

• “To trigger on a violation of an edge sequence” on page 67

• “To trigger when two edges are asserted simultaneously” on page 71

• “To generate pattern stimulus on devices” on page 75

• “To analyze jitter or time dispersion (with SPA)” on page 81

• “To analyze bus stability (with SPA)” on page 88

Looking at State Events

• “To trigger on the Nth occurrence of an event” on page 96
6

Chapter 1: Measurement Examples
Contents
• “To store N samples of an event” on page 100

• “To trigger on a sequence of events” on page 105

• “To trigger when a program loop exits” on page 111

• “To find events that are too close or too far” on page 116

• “To count occurrences of an event between two events” on page 120

• “To trigger on a function call sequence” on page 125

• “To analyze bus occupation & bandwidth (with SPA)” on page 131

Exercising the Microprocessor (with the Emulation Probe)

• “To initialize registers, access memory” on page 137

• “To use the emulation probe as a test tool” on page 140

Firmware
Development

Testing Boot Code (with the Emulation Probe)

• “To download boot code” on page 144

• “To start or stop processor execution” on page 147

• “To stop processor execution using breakpoints” on page 149

• “To capture startup execution” on page 152

Making Driver Development Measurements

• “To trigger on an 8-bit serial pattern” on page 155

• “To view serial data in parallel” on page 160

• “To capture driver execution (& view HW and SW)” on page 165

• “To capture execution up to a failure or halt” on page 171

• “To view bus activity” on page 174

• “To capture simple program messages” on page 175

• “To trigger on packet data (with DataComm Analysis)” on page 177

Making Interrupt Service Routine Measurements

• “To capture interrupt frequency and type” on page 183
7

Chapter 1: Measurement Examples
Contents
• “To measure interrupt latency and execution time” on page 186

• “To simulate particular interrupt sequences” on page 191

• “To view the occurrence rate of an event (with SPA)” on page 192

Software
Development

Analyzing Real-Time Software Execution

• “To trace about a source line” on page 199

• “To trace function flow” on page 203

• “To trace callers of a function” on page 206

• “To trace execution within a function” on page 210

• “To measure function execution time” on page 214

• “To measure function execution time (with SPA)” on page 218

• “To omit monitor cycles from the trace” on page 223

• “To stop execution at a source line (in ROM)” on page 226

Analyzing Real-Time Variable Access

• “To find NULL pointer de-references” on page 229

• “To trace a variable's values” on page 231

• “To find where variables are accessed from” on page 236

• “To trace before a variable value” on page 240

• “To stop execution on a corrupt variable” on page 245

Analyzing Real-Time Memory Usage

• “To monitor stack or heap usage” on page 251

• “To find stack overflow or guarded memory access” on page 255

System Integration Making Cross-Domain Measurements

• “To capture software execution when a scope triggers” on page 258

• “To generate patterns when a source line executes” on page 262

• “To arm one logic analyzer with another's trigger” on page 266
8

Chapter 1: Measurement Examples
Contents
• “To arm a state machine with a timing machine trigger” on page 271

• “To arm an oscilloscope when the analyzer triggers” on page 277

Making System Profile Measurements

• “To isolate the root cause of a performance bottleneck” on page 283

• “To simulate bus occupation and measure SW performance” on
page 287

Isolating Critical Defects

• “To capture SW execution on a setup or hold violation” on page 289

• “To trigger an oscilloscope when a source line executes” on page 294

Measurement Tips &
Tricks

• “Setting up 16715/16/17/18/19A triggers” on page 300

• “Setting up triggers in other logic analyzers” on page 302

• “Use trigger functions for easy measurement set up” on page 305

• “Modify trigger functions to build new measurements” on page 307

• “Know how processor execution affects measurements” on page 308

• “Getting the most out of trace memory” on page 309

• “If the trigger doesn't occur as expected” on page 309
9

Chapter 1: Measurement Examples
Hardware Turn-On
Hardware Turn-On

Looking at Signal Parameters

• “To make basic oscilloscope measurements” on page 11

Looking at Signal Edges, Patterns, and Glitches

• “To trigger on a stable pattern” on page 16

• “To find edges that are too close or too far” on page 20

• “To find the Nth transition of a signal” on page 24

• “To find when a signal or pattern stops” on page 28

• “To delay capture after a pattern” on page 32

• “To find an edge during a valid pattern” on page 36

• “To find a pattern, an edge, and another pattern” on page 40

• “To find signal glitches” on page 45

Measuring Conformance to Specifications

• “To measure conformance to specs (with the Compare tool)” on
page 51

• “To find setup and hold violations” on page 56

• “To trigger if a pattern doesn't follow an edge” on page 59

• “To verify pulse widths” on page 63

• “To trigger on a violation of an edge sequence” on page 67

• “To trigger when two edges are asserted simultaneously” on page 71

• “To generate pattern stimulus on devices” on page 75

• “To analyze jitter or time dispersion (with SPA)” on page 81

• “To analyze bus stability (with SPA)” on page 88

Looking at State Events

• “To trigger on the Nth occurrence of an event” on page 96
10

Chapter 1: Measurement Examples
Hardware Turn-On
• “To store N samples of an event” on page 100

• “To trigger on a sequence of events” on page 105

• “To trigger when a program loop exits” on page 111

• “To find events that are too close or too far” on page 116

• “To count occurrences of an event between two events” on page 120

• “To trigger on a function call sequence” on page 125

• “To analyze bus occupation & bandwidth (with SPA)” on page 131

Exercising the Microprocessor (with the Emulation Probe)

• “To initialize registers, access memory” on page 137

• “To use the emulation probe as a test tool” on page 140

Looking at Signal Parameters

• “To make basic oscilloscope measurements” on page 11

To make basic oscilloscope measurements

Possible uses:

• To measure the analog parameters of signals.

• To trace to the root cause of noise, crosstalk, or ground bounce problems
when combined with a logic analyzer.
11

Chapter 1: Measurement Examples
Hardware Turn-On
Probing the Target
System

1. Connect the oscilloscope channel probes to signals of interest in the target
system.

2. Display the oscilloscope window.

3. Select the Channels tab, and set up the channels.

Capturing the Data 1. Set up the trigger.
12

Chapter 1: Measurement Examples
Hardware Turn-On
2. Select the Run button to capture an oscilloscope trace.

You may want to change the time/div scale and select the Run button again
to capture data with a different sample rate.

Displaying the Data 1. Select the Measure tab to view the data on the analog parameters of the
captured signal.
13

Chapter 1: Measurement Examples
Hardware Turn-On
2. Select the Markers tab to set up voltage and time markers on the display.
14

Chapter 1: Measurement Examples
Hardware Turn-On
See Also “To capture software execution when a scope triggers” on page 258

“To arm an oscilloscope when the analyzer triggers” on page 277

“To trigger an oscilloscope when a source line executes” on page 294
15

Chapter 1: Measurement Examples
Hardware Turn-On
Looking at Signal Edges, Patterns, and Glitches

• “To trigger on a stable pattern” on page 16

• “To find edges that are too close or too far” on page 20

• “To find the Nth transition of a signal” on page 24

• “To find when a signal or pattern stops” on page 28

• “To delay capture after a pattern” on page 32

• “To find an edge during a valid pattern” on page 36

• “To find a pattern, an edge, and another pattern” on page 40

• “To find signal glitches” on page 45

To trigger on a stable pattern

Possible uses:

• To wait for all status lines to finish transitioning before triggering.

• To filter out spurious triggers because of transitions that occur when the
target system's state machine is indeterminate.

Probing the Target
System

1. Connect the logic analyzer probes to the signals on which you will look for
the pattern.

2. Configure a timing analysis machine.
16

Chapter 1: Measurement Examples
Hardware Turn-On
3. Assign pods if necessary.
17

Chapter 1: Measurement Examples
Hardware Turn-On
4. Format a label for the signals on which you will look for a stable pattern.

Capturing the Data 1. Use the "Find pattern present for > duration" trigger function.

2. In the trigger definition, specify the pattern, and enter the time that
pattern must be stable for.
18

Chapter 1: Measurement Examples
Hardware Turn-On
3. Select the Run button to start the measurement.

Displaying the Data 1. Use the Waveform display to verify that the pattern was stable for the
specified time before the trigger.
19

Chapter 1: Measurement Examples
Hardware Turn-On
To find edges that are too close or too far

Possible uses:

• To check DRAM row/column address strobe timing.

Probing the Target
System

1. Connect logic analyzer probes to the signals whose edges you wish to look
at.

2. Configure a timing analysis machine.
20

Chapter 1: Measurement Examples
Hardware Turn-On
3. Assign pods if necessary.
21

Chapter 1: Measurement Examples
Hardware Turn-On
4. Format labels for the signals of interest.

Capturing the Data 1. Use the "Find 2 edges too close together" or the "Find 2 edges too far
apart" trigger function.
22

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, select edges and time.

3. Select the Run button to start the measurement.

Displaying the Data 1. Open the Waveform display and use the global markers to show the time
between the edges.
23

Chapter 1: Measurement Examples
Hardware Turn-On
See Also “Use trigger functions for easy measurement set up” on page 305

To find the Nth transition of a signal

Possible uses:

• To find the 3rd occurrence of the start of a data transfer.

• To find the 1000th occurrence of a chip select line being asserted.

Probing the Target
System

1. Connect a logic analyzer probe to the signal of interest.

2. Configure a timing analysis machine.
24

Chapter 1: Measurement Examples
Hardware Turn-On
3. Assign pods if necessary.
25

Chapter 1: Measurement Examples
Hardware Turn-On
4. Format labels for the signals of interest.

Capturing the Data 1. Use the "Find Nth occurrence of an edge" trigger function.
26

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, select the edge label and number of occurrences.

3. Select the Run button to start the measurement.

Displaying the Data 1. In the Waveform window (depending on the time between signal
transitions) you may be able to see that you’ve triggered on the Nth
transition of the signal.
27

Chapter 1: Measurement Examples
Hardware Turn-On
See Also “Use trigger functions for easy measurement set up” on page 305

To find when a signal or pattern stops

You can count time by counting occurrences of sampled data or by
using a timer.

Possible uses:

• To find when signals are inactive for too long a time.

• To check when execution leaves an address range.

• To check when expected variable values stop being written.
28

Chapter 1: Measurement Examples
Hardware Turn-On
• To capture what leads up to an unexpected condition.

Probing the Target
System

1. Configure a timing machine to look at signal edges or patterns.

2. Assign pods if necessary.
29

Chapter 1: Measurement Examples
Hardware Turn-On
3. Format labels for the signals or patterns of interest.

Capturing the Data 1. Use the "Find pattern absent for > duration" trigger function.
30

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, specify the pattern and the amount of time
absent.

3. Select the Run button to start the measurement.

Displaying the Data 1. In the Waveform display (depending on the time between the edge/pattern
and the trigger) you may be able to see the last time the edge/pattern
occurred.
31

Chapter 1: Measurement Examples
Hardware Turn-On
See Also “Use trigger functions for easy measurement set up” on page 305

To delay capture after a pattern

Possible uses:

• To hold off the trigger and look at control signals later than when the
address bus pattern becomes invalid.

• To look for a receiver's response which is supposed to occur 3 milliseconds
after a transmission.

Probing the Target
System

1. Configure a timing analysis machine.
32

Chapter 1: Measurement Examples
Hardware Turn-On
2. Assign pods if necessary.
33

Chapter 1: Measurement Examples
Hardware Turn-On
3. Format a label for the signals on which you will look for a stable pattern.

Capturing the Data 1. Build a two level trigger setup using the "Find pattern present for >
duration" and "Wait t seconds" trigger functions.
34

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, specify the pattern and the amount of time
present. Then, enter the amount of time to wait.

3. Select the Run button to start the measurement.

Displaying the Data 1. In the Waveform display (depending on the time between the pattern and
the trigger) you may be able to see the last time the pattern occurred.
35

Chapter 1: Measurement Examples
Hardware Turn-On
See Also “Use trigger functions for easy measurement set up” on page 305

To find an edge during a valid pattern

Possible uses:

• To capture a memory chip's select line at a given address.

• To view the timing of a write signal to a peripheral.
36

Chapter 1: Measurement Examples
Hardware Turn-On
Probing the Target
System

1. Configure a timing analysis machine.

2. Assign pods if necessary.
37

Chapter 1: Measurement Examples
Hardware Turn-On
3. Format one label for the signals on which you will look for a pattern and
another label for the signal on which you will look for the edge.

Capturing the Data 1. Use the "Find edge AND pattern" trigger function.
38

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, specify the edge and the pattern.

3. Select the Run button to start the measurement.

Displaying the Data 1. When the analyzer triggers, use the Waveform display to show the edge in
relation to the pattern.

If the analyzer never triggers, it could mean the pattern was never found or
the edge never occurs when the pattern is valid.
39

Chapter 1: Measurement Examples
Hardware Turn-On
See Also “Use trigger functions for easy measurement set up” on page 305

“If the trigger doesn't occur as expected” on page 309

To find a pattern, an edge, and another pattern

Possible uses:

• To view a correct address bus, control signal, data bus sequence.

• To check whether a data packet was sent, a handshake signal followed, and
an acknowledgement was returned.

Probing the Target
System

1. Configure a timing analysis machine.
40

Chapter 1: Measurement Examples
Hardware Turn-On
2. Assign pods if necessary.
41

Chapter 1: Measurement Examples
Hardware Turn-On
3. Format labels for the signals on which you will look for the edge and
patterns.

Capturing the Data 1. Build a three level trigger setup using the "Find pattern", "Find edge", and
"Find pattern" trigger functions.
42

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, specify the first pattern and the amount of time
present. Then, specify the edge. Finally, specify the second pattern and
the amount of time present.
43

Chapter 1: Measurement Examples
Hardware Turn-On
3. Select the Run button to start the measurement.

Displaying the Data 1. When the analyzer triggers, use the Waveform display to show the proper
sequence was captured.
44

Chapter 1: Measurement Examples
Hardware Turn-On
If the analyzer never triggers, the proper sequence does not occur.
Depending on the level that was reached in the sequence above, you will
need to set up a different trigger to see what actually occurs.

See Also “Use trigger functions for easy measurement set up” on page 305

“If the trigger doesn't occur as expected” on page 309

To find signal glitches

Possible uses:

• To look for pulses more narrow than the minimum pulse width.
45

Chapter 1: Measurement Examples
Hardware Turn-On
Probing the Target
System

1. Connect the logic analyzer probes to the signals on which you will look for
glitches.

2. Configure a timing analysis machine.

The sample period will specify what is interpreted as a glitch.

If the logic analyzer has a special acquisition mode for capturing glitches,
select that mode.

NOTE: You must select the glitch capture mode in order to see the glitch symbol in
the Waveform display.

3. Assign pods if necessary.
46

Chapter 1: Measurement Examples
Hardware Turn-On
4. Format labels for the signals of interest.

Capturing the Data You can trigger on anything, on any glitch, or on a particular glitch.

1. Use the "Find edge" trigger function.
47

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, specify the signal on which you will look for
glitches.

3. Select the Run button to start the measurement.

Displaying the Data 1. Use the Waveform display to show the captured glitches.
48

Chapter 1: Measurement Examples
Hardware Turn-On
2. Use the TimingZoom display to get a better picture of the glitch.
49

Chapter 1: Measurement Examples
Hardware Turn-On
See Also “To arm an oscilloscope when the analyzer triggers” on page 277

Measuring Conformance to Specifications

• “To measure conformance to specs (with the Compare tool)” on page 51

• “To find setup and hold violations” on page 56

• “To trigger if a pattern doesn't follow an edge” on page 59

• “To verify pulse widths” on page 63

• “To trigger on a violation of an edge sequence” on page 67

• “To trigger when two edges are asserted simultaneously” on page 71

• “To generate pattern stimulus on devices” on page 75

• “To analyze jitter or time dispersion (with SPA)” on page 81

• “To analyze bus stability (with SPA)” on page 88
50

Chapter 1: Measurement Examples
Hardware Turn-On
To measure conformance to specs (with the Compare

tool)

Possible uses:

• To measure specifications conformance against known-good circuitry.

• To measure specifications conformance under component stress
conditions.

Probing the Target
System

1. Configure a timing or state machine.
51

Chapter 1: Measurement Examples
Hardware Turn-On
2. Assign pods if necessary.
52

Chapter 1: Measurement Examples
Hardware Turn-On
3. Format labels for the signals of interest.

Capturing the Data 1. Set up a trigger specification.
53

Chapter 1: Measurement Examples
Hardware Turn-On
2. Select the Run button to start the measurement.

3. In the Workspace window, add the Compare tool to your analyzer
configuration and copy the known-good dataset to the Compare tool’s
reference buffer.
54

Chapter 1: Measurement Examples
Hardware Turn-On
4. If you want to turn OFF the analyzer and probe a different target system,
save the Compare tool configuration. This will save the contents of the
Reference Buffer to the logic analyzer’s disk.

5. Probe a different target system or add the component stress conditions.

6. If you saved a Compare tool configuration, load it.

7. Select the Run button to repeat the measurement.

Displaying the Data 1. In the display window, differences in the measurement results will be
highlighted with gray.

Note that a difference flag label is generated so you can search for
differences.

See Also The Compare tool online help (see the Compare Tool help volume) for
55

Chapter 1: Measurement Examples
Hardware Turn-On
more information.

To find setup and hold violations

Possible uses:

• Verifying that design timing meets setup and hold specifications of flip-
flops, latches, and other memory element circuitry.

Requirements:

• The Agilent Technologies 16517A 4GHz Timing/1GHz State Logic Analyzer
can look for setup and hold violations on multiple channels (for example, a
data bus).

Probing the Target
System

1. Configure a timing analysis machine.
56

Chapter 1: Measurement Examples
Hardware Turn-On
2. Format labels for the signals of interest.

Capturing the Data 1. In the Trigger window, replace level 1 of the trigger specification with the
"Find setup or hold violation" macro. In the macro dialog, select the label,
edge, setup time limit, and hold time limit.
57

Chapter 1: Measurement Examples
Hardware Turn-On
2. Set up the edge resource.
58

Chapter 1: Measurement Examples
Hardware Turn-On
3. Select the Run button to start the measurement.

Displaying the Data 1. If the analyzer triggers, a setup or hold violation occurs. Open the
Waveform display and use the global markers to see the actual setup or
hold time.

See Also To see how setup and hold violations affect software execution, (see “To
capture SW execution on a setup or hold violation” on page 289).

To trigger if a pattern doesn’t follow an edge

Possible uses:

• To measure interrupt response time.
59

Chapter 1: Measurement Examples
Hardware Turn-On
• To trigger when expected data does not appear on the data bus from a
remote device when requested.

Probing the Target
System

1. Configure a timing analysis machine.

2. Assign pods if necessary.
60

Chapter 1: Measurement Examples
Hardware Turn-On
3. Format one label for the signals on which you will look for a pattern and
another label for the signal on which you will look for the edge.

Capturing the Data 1. Use the "Find pattern occurring too late after edge" trigger function.
61

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, enter the time period and specify the edge and the
pattern.

3. Select the Run button to start the measurement.

Displaying the Data 1. When the analyzer triggers, use the Waveform display to show that the
pattern didn’t occur after the edge. Use the Search dialog to find the edge
and the pattern.
62

Chapter 1: Measurement Examples
Hardware Turn-On
If the analyzer never triggers, the pattern always occurs after the edge
within the time specified.

See Also “Use trigger functions for easy measurement set up” on page 305

“If the trigger doesn't occur as expected” on page 309

To verify pulse widths

Possible uses:

• To test minimum and maximum pulse limits.

• To verify that all pulses controlling a mechanical device fall within
specifications.

Probing the Target
System

1. Configure a timing analysis machine.
63

Chapter 1: Measurement Examples
Hardware Turn-On
2. Assign pods if necessary.
64

Chapter 1: Measurement Examples
Hardware Turn-On
3. Format a label for the signal whose pulses you will be looking at.

Capturing the Data 1. Use the "Find width violation on pattern/pulse" trigger function.
65

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, specify the pattern and enter the minimum and
maximum widths.

3. Select the Run button to start the measurement.

Displaying the Data 1. When the analyzer triggers, use the Waveform display to show that the
trailing edge of the pulse didn’t occur within the defined interval.
66

Chapter 1: Measurement Examples
Hardware Turn-On
If the analyzer never triggers, the falling edge occurs within the defined
interval.

See Also “Use trigger functions for easy measurement set up” on page 305

“If the trigger doesn't occur as expected” on page 309

To trigger on a violation of an edge sequence

Possible uses:

• To detect a handshake violation.

• To trigger on incorrect control signal generation from a Programmable
Logic Device (PLD).

Probing the Target
System

1. Configure a timing analysis machine.
67

Chapter 1: Measurement Examples
Hardware Turn-On
2. Assign pods if necessary.
68

Chapter 1: Measurement Examples
Hardware Turn-On
3. Format labels for the signals whose edges you will be looking at.

Capturing the Data 1. Build a two level trigger setup using the "Find pattern" and "Advanced 2-
way branch" trigger functions. The pattern will identify when the edge
sequence is about to occur and the 2-way branch will check for the
sequence of edges.
69

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, specify the pattern and the edges. If edges occur
in the wrong sequence, trigger the logic analyzer; otherwise, go back and
look for the next occurrence of the edges.

3. Select the Run button to start the measurement.

Displaying the Data 1. When the analyzer triggers, use the Waveform display to show the edge
sequence violation.
70

Chapter 1: Measurement Examples
Hardware Turn-On
If the analyzer never triggers, the edges occur in the proper sequence.

See Also “If the trigger doesn't occur as expected” on page 309

To trigger when two edges are asserted simultaneously
71

Chapter 1: Measurement Examples
Hardware Turn-On
Possible uses:

• To detect bus contention.

• To view system activity when two entities are trying to seize a digital
communications channel at once.

Probing the Target
System

1. Configure a timing analysis machine.

2. Assign pods if necessary.
72

Chapter 1: Measurement Examples
Hardware Turn-On
3. Format labels for the signals whose edges you will be looking at.

Capturing the Data 1. Use the "Find edge" trigger function.
73

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, select the button after Find, and choose the
"Insert LABEL after" item. Specify the two edges.

3. Select the Run button to start the measurement.

Displaying the Data 1. When the analyzer triggers, use the Waveform display to show the two
edges that occur at the same time.
74

Chapter 1: Measurement Examples
Hardware Turn-On
If the analyzer never triggers, the two edges don’t occur within the same
sample period.

To generate pattern stimulus on devices

Requirements:

• This measurement requires a pattern generator module (Agilent
Technologies 16522A).

Possible uses:

• To simulate digital circuitry that isn't available.

• To generate signals for functionally testing prototype hardware.
75

Chapter 1: Measurement Examples
Hardware Turn-On
Connecting Pattern
Generator Outputs to
the Target System

1. Connect the pattern generator lines to your target system using the
appropriate TTL, CMOS, or ECL data or clock pods (see the pattern
generator documentation (see the Agilent Technologies 16522A 200M

Vectors/s Pattern Generator help volume) for more information).

Configuring the
Pattern Generator &
Labeling Outputs

1. In the Format tab, select the output mode and the clock source, and label
the output signals.

Building the Test
Vectors

1. In the Sequence tab, insert vectors. Select data values, and enter the new
values. A double-quote character means the same value as above.
76

Chapter 1: Measurement Examples
Hardware Turn-On
During a repetitive run, the vectors in the INIT section are only executed
once.

You can use macros to insert vectors that need to be repeated.
77

Chapter 1: Measurement Examples
Hardware Turn-On
You can pass parameters to macros.
78

Chapter 1: Measurement Examples
Hardware Turn-On
Running the Pattern
Generator

1. When you’ve finished building the test vectors, select the Run button to
cause the pattern generator to output the vectors.
79

Chapter 1: Measurement Examples
Hardware Turn-On
80

Chapter 1: Measurement Examples
Hardware Turn-On
See Also “To simulate particular interrupt sequences” on page 191

“To generate patterns when a source line executes” on page 262

To analyze jitter or time dispersion (with SPA)

Requirements:

• This measurement requires the system performance analyzer (SPA) tool
set.

Possible uses:

• To measure the jitter between two edges.

• To measure the variation between two bus states.

• To measure setup and hold times.

Probing the Target
System

1. Probe the signals of interest.

2. Configure a timing or state analyzer, depending on whether you want to
look at signal edges, patterns, or events.
81

Chapter 1: Measurement Examples
Hardware Turn-On
3. Assign pods if necessary.
82

Chapter 1: Measurement Examples
Hardware Turn-On
4. Label the logic analyzer channels. (If you’re using an analysis probe, you
can configure the analyzer and set up labels by loading the included
configuration files.)

Capturing the Data 1. Set up a trigger specification to capture the signal edges, patterns, or
events you’re interested in.
83

Chapter 1: Measurement Examples
Hardware Turn-On
2. Select the Run button to start the measurement.

3. Display the captured waveforms.
84

Chapter 1: Measurement Examples
Hardware Turn-On
Displaying the Data 1. Use the system performance analyzer’s Time Interval display to view the
captured data.

2. Define the start and end of the event whose time variations you wish to
measure.
85

Chapter 1: Measurement Examples
Hardware Turn-On
3. Define buckets for expected time ranges.
86

Chapter 1: Measurement Examples
Hardware Turn-On
4. Set the appropriate data gathering and display options.

Use Accumulate Mode to analyze the behavior of your system over a long
period of time (and, perhaps, run the measurement repetitively).

5. Run the measurement (and, perhaps, stop the measurement if it’s running
repetitively) and view the results.

Statistics such as the maximum time, minimum time, standard deviation,
and mean help you document system behavior.
87

Chapter 1: Measurement Examples
Hardware Turn-On
To analyze bus stability (with SPA)

The stability of a bus is defined by two or more consecutive
acquisitions of the same data value on the bus.

For example, if you analyze a microprocessor’s access to a RAM, you
want to be sure that the data is stable when it is strobed.

In this context, the system performance analyzer helps you
characterize areas of stability or instability for this bus.

Requirements:

• This measurement requires the system performance analyzer (SPA) tool
set.

Possible uses:

• To measure the correlation between a signal (such as a strobe or an edge)
and the presence of valid, stable information on a bus (or a label with one
or more channels).

• To search on the entry or exit of a stable or unstable bus condition.

• To focus on bus transactions.

• To search for stability within a defined time range or outside a defined time
range.

Probing the Target
System

1. Probe the bus and strobe signals of interest.
88

Chapter 1: Measurement Examples
Hardware Turn-On
2. Configure a timing analyzer.

3. Assign pods if necessary.
89

Chapter 1: Measurement Examples
Hardware Turn-On
4. Label the logic analyzer channels.

Capturing the Data 1. Set up a trigger specification to capture the strobe signal edge and the bus
signals.
90

Chapter 1: Measurement Examples
Hardware Turn-On
Displaying the Data 1. Use the system performance analyzer’s Time Interval display to view the
captured data.

2. Define the start of the event as the data strobe signal going active, and
define the end of event as the bus being stable (that is, a "don’t care"
pattern Not Present).
91

Chapter 1: Measurement Examples
Hardware Turn-On
3. Turn ON the system performance analyzer’s bus mode.

4. Define buckets for expected time ranges.
92

Chapter 1: Measurement Examples
Hardware Turn-On
5. Set the appropriate data gathering and display options.

Use Accumulate Mode to analyze the behavior of your system over a long
period of time (and, perhaps, run the measurement repetitively).

6. Run the measurement (and, perhaps, stop the measurement if it’s running
repetitively) and view the results.
93

Chapter 1: Measurement Examples
Hardware Turn-On
You can use recorded event times to view an event in the Waveform
display.
94

Chapter 1: Measurement Examples
Hardware Turn-On
See Also Bus Mode Search Criteria (see the System Performance Analyzer help
volume) in the system performance analyzer help volume.
95

Chapter 1: Measurement Examples
Hardware Turn-On
Looking at State Events

• “To trigger on the Nth occurrence of an event” on page 96

• “To store N samples of an event” on page 100

• “To trigger on a sequence of events” on page 105

• “To trigger when a program loop exits” on page 111

• “To find events that are too close or too far” on page 116

• “To count occurrences of an event between two events” on page 120

• “To trigger on a function call sequence” on page 125

• “To analyze bus occupation & bandwidth (with SPA)” on page 131

To trigger on the Nth occurrence of an event

Possible uses:

• To find the 50th occurrence of a digital signal processing (DSP)
subroutine.

• To trigger on the 3rd write to a specific memory address.

Probing the Target
System

1. Configure a state analysis machine.
96

Chapter 1: Measurement Examples
Hardware Turn-On
2. Select the state analyzer’s clock input.

3. Format labels for the signals on which you will look for the event.
97

Chapter 1: Measurement Examples
Hardware Turn-On
Capturing the Data 1. In the Trigger tab, use the "Find pattern n times" trigger function.

2. In the trigger definition, enter the number of occurrences and specify the
pattern.

Use the default storage qualifier that is initially on and stores all states.

3. Select the Run button to start the measurement.
98

Chapter 1: Measurement Examples
Hardware Turn-On
Displaying the Data 1. When the analyzer triggers, use the Listing display to show that the event
occurred the number of times you specified.

If the analyzer never triggers, the event does not occur the number of
times specified. You can stop the measurement and look at the Listing
display to see how many times the event did occur.

See Also “Use trigger functions for easy measurement set up” on page 305

“If the trigger doesn't occur as expected” on page 309
99

Chapter 1: Measurement Examples
Hardware Turn-On
To store N samples of an event

You can limit the data that is stored in trace memory at each trace
sequence level or by specifying whether trace level branches are
stored.

Possible uses:

• To view the first 200 reads and writes to a FIFO.

• To look at 75 pushes onto the stack.

Probing the Target
System

1. Configure a state analysis machine.
100

Chapter 1: Measurement Examples
Hardware Turn-On
2. Select the state analyzer’s clock input.

3. Assign pods if necessary.
101

Chapter 1: Measurement Examples
Hardware Turn-On
4. Format labels for the signals on which you will look for the event.

Capturing the Data 1. In the Trigger tab, use the "Find pattern n times" trigger function.
102

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, specify the event and the number of samples you
want to store. Also, insert an action to turn off default storing after the
number of events occur.

3. Set up the default storing to store only the event you’re interested in.

4. Select the Run button to start the measurement.

5. Select the Stop button after the trigger occurs. (Because default
103

Chapter 1: Measurement Examples
Hardware Turn-On
storing is turned off after the trigger, trace memory will not fill up.)

Displaying the Data 1. When the analyzer triggers, use the Listing display to show that N event
occurrences are stored.

If the analyzer never triggers, the event does not occur N times. You can
stop the measurement and look at the Listing display to see how many
times the event did occur.

See Also “If the trigger doesn't occur as expected” on page 309
104

Chapter 1: Measurement Examples
Hardware Turn-On
To trigger on a sequence of events

Possible uses:

• To trigger on the occurrence of a calculation subroutine after two
initialization subroutines have executed (non-consecutive sequence of
events).

• To trigger on the access to an I/O port after its two I/O registers have been
set (non-consecutive sequence of events).

• To trigger on the occurrence of a subroutine only when it has been called
from a specific branch of the main program (consecutive sequence of
events).

• To look for data writes to 4 consecutive memory locations with no reads in-
between (consecutive sequence of events).

Probing the Target
System

1. Configure a state analysis machine.
105

Chapter 1: Measurement Examples
Hardware Turn-On
2. Select the state analyzer’s clock input.

3. Assign pods if necessary.
106

Chapter 1: Measurement Examples
Hardware Turn-On
4. Format labels for the signals on which you will look for the event.

Capturing the Data 1. To look for a sequence of non-consecutive events, set up a trigger
sequence where level 1 looks for the first event; when it’s found, level 2
looks for the second event, and so on. The second to last sequence level
looks for the last event and triggers the analyzer when it’s found.
107

Chapter 1: Measurement Examples
Hardware Turn-On
To look for a sequence of consecutive events, set up a trigger sequence
where level 1 looks for the first event; when it’s found, level 2 looks for the
second event (which if found causes a branch to the next level) or a state
that is not the second event or indicates an event out of sequence (which if
found causes a branch back to the first level to restart the search).

Subsequent levels are the same as level 2. When the last event is found, the
analyzer triggers, and the last sequence level is used to specify what is
stored after the trigger.
108

Chapter 1: Measurement Examples
Hardware Turn-On
Note that, when looking for a consecutive sequence of events, any event
that disqualifies the sequence you’re looking for can be used in the "else
on" branches. For example, instead of looking for a particular sequence of
states, you can look for a particular sequence of function calls.

To show the differences between these trigger definitions, nothing is
109

Chapter 1: Measurement Examples
Hardware Turn-On
stored by default.

2. Select the Run button to start the measurement.

Displaying the Data 1. When the analyzer triggers, use the Listing display to show that the
sequence of events occurred.
110

Chapter 1: Measurement Examples
Hardware Turn-On
If the analyzer never triggers, at least one of the events in the sequence
never occurs. You can stop the measurement and look at the Listing
display to see which events in the sequence were captured.

See Also “If the trigger doesn't occur as expected” on page 309

To trigger when a program loop exits

Possible uses:

• To capture execution after a background monitor loop that runs until a
control key is pressed.

• To verify that all stacks and registers are restored correctly before exiting
a subroutine (that is, to look at code execution before exit).
111

Chapter 1: Measurement Examples
Hardware Turn-On
Probing the Target
System

1. Configure a state analysis machine.

2. Select the state analyzer’s clock input.

3. Assign pods if necessary.
112

Chapter 1: Measurement Examples
Hardware Turn-On
4. Format a label for the address bus signals on which you will look for loop
start and loop end events. (If you are using an analysis probe, the included
configuration files will format an ADDR label.)

Capturing the Data 1. Set up a trigger sequence where level 1 looks for the loop start event; when
it’s found, level 2 looks for the loop end event; when it’s found level 3 looks
for an event that isn’t the loop start event (which if found triggers the
analyzer) or the loop start event (which if found causes a branch back to
level 2 where the loop end event is searched for).
113

Chapter 1: Measurement Examples
Hardware Turn-On
To show only loop start and loop end events until the logic analyzer
triggers, turn default storing off initially.
114

Chapter 1: Measurement Examples
Hardware Turn-On
2. Select the Run button to start the measurement.

Displaying the Data 1. When the analyzer triggers, use the Listing display to show that the
program loop exited.

If the analyzer never triggers, you can look at the run status message line
to see which sequence levels are visited, and you can learn more about
why the trigger never occurred.

See Also “If the trigger doesn't occur as expected” on page 309
115

Chapter 1: Measurement Examples
Hardware Turn-On
To find events that are too close or too far

You can measure time by using a timer or by counting states or the
occurrences of an event.

Possible uses:

• To detect when a subroutine is exited prematurely from any number of
exit points (events too close, not enough cycles between subroutine entry
and exit).

• To find a protocol violation in sending control messages to a peripheral
(where events that are too close violate the protocol).

• To trigger when secondary cache must be accessed between 2 consecutive
memory reads, producing extra cycles (events too far, that is, there are too
many cycles between consecutive memory reads).

• To detect when an interrupt routine is executing for an excessive number
of cycles (events too far, that is, there are too many cycles between
interrupt entry and exit).

• To examine code execution when circuitry issues a data request interrupt
more than N times during the execution of a time-critical subroutine
(events too far, that is, there are too many interrupts between subroutine
entry and exit).

• To trigger if a loop is executed more than 10 times between 2 non-
consecutive routines (events too far, that is, there are too many loop
executions between two routines).
116

Chapter 1: Measurement Examples
Hardware Turn-On
Probing the Target
System

1. Configure a state analysis machine.

2. Select the state analyzer’s clock input.

3. Assign pods if necessary.
117

Chapter 1: Measurement Examples
Hardware Turn-On
4. Format labels for the signals on which you will look for the events.

Capturing the Data 1. In the Trigger window, replace level 1 of the trigger specification with one
of the following trigger functions:

• Find pattern2 occurring too soon after pattern1

• Find too few states between pattern1 and pattern2

• Find pattern2 occurring too late after pattern1

• Find too many states between pattern1 and pattern2
118

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, specify the patterns and enter the time limit.

3. Select the Run button to start the measurement.

Displaying the Data 1. When the analyzer triggers, use the Listing display to show that fewer or
more than N cycles, events, or some amount of time occurred between the
two events.
119

Chapter 1: Measurement Examples
Hardware Turn-On
See Also “Use trigger functions for easy measurement set up” on page 305

“If the trigger doesn't occur as expected” on page 309

To count occurrences of an event between two events

Possible uses:

• To verify that a memory refresh routine is executing the number of times
expected.

• To count the number of memory write cycles within a segment of code.
120

Chapter 1: Measurement Examples
Hardware Turn-On
Probing the Target
System

1. Configure a state analysis machine.

2. Select the state analyzer’s clock input.

3. Assign pods if necessary.
121

Chapter 1: Measurement Examples
Hardware Turn-On
4. Format labels for the signals on which you will look for the events.

Capturing the Data 1. Set up a trigger sequence where level 1 looks for the start event; when it’s
found, level 2 looks for the second event; when it’s found trigger the
analyzer.
122

Chapter 1: Measurement Examples
Hardware Turn-On
2. Store the start and end events and the event you want to count.

3. Change the count qualifier to count the event you are interested in.
123

Chapter 1: Measurement Examples
Hardware Turn-On
4. Select the Run button to start the measurement.

Displaying the Data 1. When the analyzer triggers, use the Listing display to show the start and
end events. The difference in count values shows the number of times the
count event occurred between the start and end events.
124

Chapter 1: Measurement Examples
Hardware Turn-On
If the analyzer never triggers, the start or end events were never found.
Look at the run status message to see which sequence levels are visited;
this will tell you which event was not found.

See Also “If the trigger doesn't occur as expected” on page 309

To trigger on a function call sequence

Possible uses:

• To trigger when procedure 3 displays an error message, but only when it's
called by procedure 2 and procedure 1 before that.

• To trigger on the 3rd nested occurrence of a recursive subroutine.

Probing the Target
System

1. Configure a state analysis machine.
125

Chapter 1: Measurement Examples
Hardware Turn-On
2. Select the state analyzer’s clock input.

3. Assign pods if necessary.
126

Chapter 1: Measurement Examples
Hardware Turn-On
4. Format labels for the signals on which you will look for the program flow
events.

5. Load symbols from your program’s object module file.
127

Chapter 1: Measurement Examples
Hardware Turn-On
Capturing the Data 1. Set up a trigger sequence where level 1 looks for the procedure 1; when it’s
found, level 2 looks for procedure 2 or the end of procedure 1 (which if
found will restart the search). Level 3 looks for procedure 3 (which if
found will trigger the analyzer) or the end of procedure 2 (which if found
will branch back to level 2).
128

Chapter 1: Measurement Examples
Hardware Turn-On
2. In the trigger definition, specify the program flow events.
129

Chapter 1: Measurement Examples
Hardware Turn-On
3. Set up default storing to be initially off.

4. Select the Run button to start the measurement.

Displaying the Data 1. When the analyzer triggers, use the Listing display to show the particular
sequence was captured.
130

Chapter 1: Measurement Examples
Hardware Turn-On
If the analyzer never triggers, look at the run status message to see which
sequence levels are visited; this will tell you which event was not found.

See Also “If the trigger doesn't occur as expected” on page 309

To analyze bus occupation & bandwidth (with SPA)

Bus occupation and bandwidth measurements generally show the
131

Chapter 1: Measurement Examples
Hardware Turn-On
amount of idle bus states among all bus states.

Requirements:

• This measurement requires the system performance analyzer (SPA) tool
set.

Possible uses:

• To show the share of the workload that each processor in a multiple-
processor system carries, or to determine if the system is balanced.

• To analyze headroom by examining the percentage of idle bus states.

• To analyze cache hits and misses.

Probing the Target
System

1. Probe the bus you wish to analyze.

2. Configure a state analysis machine.

3. Select the state analyzer's clock input.
132

Chapter 1: Measurement Examples
Hardware Turn-On
4. Assign pods if necessary.

5. Label the logic analyzer signals. If you are using an analysis probe, you can
configure and label signals with provided configuration files.
133

Chapter 1: Measurement Examples
Hardware Turn-On
Capturing the Data 1. Set up a trigger specification to capture all activity on the bus.

2. Select the Run button to start the measurement.

Displaying the Data 1. Use the System Performance Analyzer’s State Interval display to view the
measurement result.
134

Chapter 1: Measurement Examples
Hardware Turn-On
2. Define a state range that corresponds to idle bus states.
135

Chapter 1: Measurement Examples
Hardware Turn-On
There is no limit to the number of ranges that can be simultaneously
defined and displayed. The ranges can be sorted alphabetically or by
number of hits.

3. Run the measurement and view the results.

See Also “To view bus activity” on page 174

Exercising the Microprocessor (with the
Emulation Probe)

• “To initialize registers, access memory” on page 137

• “To use the emulation probe as a test tool” on page 140
136

Chapter 1: Measurement Examples
Hardware Turn-On
To initialize registers, access memory

Requirements:

• Your target system microprocessor must have on-chip debug circuitry that
an emulation probe can work with.

The emulation probe connects to a debug port connector on the analysis
probe or to a debug port connector designed into your target system.

• You need either the emulation control tool set in the Agilent Technologies
16700A/B-series logic analysis system or you need third-party debugger
software to control the microprocessor debug interaction.

Possible uses:

• To test microprocessor access to target system memory or I/O.

• To modify the contents of microprocessor data or configuration registers.

• To prepare the target system for downloading code to RAM.

Probing the Target
System

1. Make sure the emulation probe (or emulation module and emulation
adapter) has been connected to the target system.

2. Set up the emulation control tool set or third-party debugger connection to
the emulation probe.
137

Chapter 1: Measurement Examples
Hardware Turn-On
Starting the Emulation
Control Software

1. Start an emulation module session.

If you have third-party debugger software (on a computer in the network),
start that software, and connect it to the emulation probe.

Accessing/Modifying
Registers, Memory, or
I/O

1. In the emulation control tool set, open the Register, Memory, or I/O
window, display the locations you’re interested in, and modify particular
locations.
138

Chapter 1: Measurement Examples
Hardware Turn-On
If you are using a third-party debugger, perform these tasks using its
interface.

See Also “To download boot code” on page 144

“To use the emulation probe as a test tool” on page 140
139

Chapter 1: Measurement Examples
Hardware Turn-On
To use the emulation probe as a test tool

Requirements:

• Your target system microprocessor must have on-chip debug circuitry that
an emulation probe can work with.

The emulation probe connects to a debug port connector on the analysis
probe or to a debug port connector designed into your target system.

• You need the emulation control tool set in the Agilent Technologies
16700A/B-series logic analysis system.

Possible uses:

• To automate a sequence of register, memory, or I/O access commands.

• To control the execution of the microprocessor as part of a system test.

Probing the Target
System

1. Make sure the emulation probe (or emulation module and emulation
adapter) has been connected to the target system.

2. Set up the emulation control tool set connection to the emulation probe.
140

Chapter 1: Measurement Examples
Hardware Turn-On
Creating/Editing the
Command Script

1. Access the Command Line window.

2. Select the Edit Script button.

3. Enter the comment line that identifies the file as a run control script.
141

Chapter 1: Measurement Examples
Hardware Turn-On
4. Enter commands.

5. Save the script to a file.

Playing Back the
Command Script

1. Select the Playback Script button and choose the run control script file.

See Also “To initialize registers, access memory” on page 137
142

Chapter 1: Measurement Examples
Firmware Development
Firmware Development

Testing Boot Code (with the Emulation Probe)

• “To download boot code” on page 144

• “To start or stop processor execution” on page 147

• “To stop processor execution using breakpoints” on page 149

• “To capture startup execution” on page 152

Making Driver Development Measurements

• “To trigger on an 8-bit serial pattern” on page 155

• “To view serial data in parallel” on page 160

• “To capture driver execution (& view HW and SW)” on page 165

• “To capture execution up to a failure or halt” on page 171

• “To view bus activity” on page 174

• “To capture simple program messages” on page 175

• “To trigger on packet data (with DataComm Analysis)” on page 177

Making Interrupt Service Routine Measurements

• “To capture interrupt frequency and type” on page 183

• “To measure interrupt latency and execution time” on page 186

• “To simulate particular interrupt sequences” on page 191

• “To view the occurrence rate of an event (with SPA)” on page 192

Testing Boot Code (with the Emulation Probe)

• “To download boot code” on page 144

• “To start or stop processor execution” on page 147

• “To stop processor execution using breakpoints” on page 149
143

Chapter 1: Measurement Examples
Firmware Development
• “To capture startup execution” on page 152

To download boot code

Requirements:

• Your target system microprocessor must have on-chip debug circuitry that
an emulation probe can work with.

The emulation probe connects to a debug port connector on the analysis
probe or to a debug port connector designed into your target system.

• You need the emulation control tool set in the Agilent Technologies
16700A/B-series logic analysis system.

Possible uses:

• To move boot code into target system RAM for execution.

Probing the Target
System

1. Make sure the emulation probe (or emulation module and emulation
adapter) has been connected to the target system.

2. Set up the emulation control tool set connection to the emulation probe.
144

Chapter 1: Measurement Examples
Firmware Development
Downloading Boot
Code

1. Access the Load Executable window.

2. Select the appropriate file format, options, and executable file name.

3. Select the Apply button to download the executable file.
145

Chapter 1: Measurement Examples
Firmware Development
Verifying the
Download

1. You can verify the download by looking at the memory locations in
disassembled format.

See Also “To initialize registers, access memory” on page 137 (if you need to
initialize registers before code download)
146

Chapter 1: Measurement Examples
Firmware Development
To start or stop processor execution

Requirements:

• Your target system microprocessor must have on-chip debug circuitry that
an emulation probe can work with.

The emulation probe connects to a debug port connector on the analysis
probe or to a debug port connector designed into your target system.

• You need either the emulation control tool set in the Agilent Technologies
16700A/B-series logic analysis system or you need third-party debugger
software to control the microprocessor debug interaction.

Possible uses:

• To control the target system boot up sequence.

• To view the state of the microprocessor at particular points during
program execution.

Probing the Target
System

1. Make sure the emulation probe (or emulation module and emulation
adapter) has been connected to the target system.

2. Set up the emulation control tool set or third-party debugger connection to
the emulation probe.

Starting the Emulation
Control Software

1. If you have the emulation control tool set in your Agilent Technologies
16700A/B-series logic analysis system, drag the icon to the workspace, and
connect to the emulation probe.
147

Chapter 1: Measurement Examples
Firmware Development
If you have third-party debugger software, start that software, and connect
to the emulation probe.

Controlling Processor
Execution

1. In the emulation control tool set, open the Run Control window, and select
the Run or Stop buttons.

If you have a third-party debugger, perform these tasks using its interface.

See Also “To stop processor execution using breakpoints” on page 149
148

Chapter 1: Measurement Examples
Firmware Development
To stop processor execution using breakpoints

Requirements:

• Your target system microprocessor must have on-chip debug circuitry that
an emulation probe can work with.

The emulation probe connects to a debug port connector on the analysis
probe or to a debug port connector designed into your target system.

• You need either the emulation control tool set in the Agilent Technologies
16700A/B-series logic analysis system or you need third-party debugger
software to control the microprocessor debug interaction.

Possible uses:

• To stop microprocessor execution on a particular line of source code.

• To view the state of the microprocessor at particular points during
program execution.

Probing the Target
System

1. Make sure the emulation probe (or emulation module and emulation
adapter) has been connected to the target system.

2. Set up the emulation control tool set or third-party debugger connection to
the emulation probe.

Starting the Emulation
Control Software

1. If you have the emulation control tool set in your Agilent Technologies
16700A/B-series logic analysis system, drag the icon to the workspace, and
connect to the emulation probe.
149

Chapter 1: Measurement Examples
Firmware Development
If you have third-party debugger software, start that software, and connect
to the emulation probe.

Setting Breakpoints 1. In the emulation control tool set, open the Breakpoints window, select a
breakpoint to use, and enter the address at which microprocessor
execution should stop.
150

Chapter 1: Measurement Examples
Firmware Development
Hardware breakpoints can be used for addresses in target system ROM.

Software breakpoints replace existing code with a breakpoint

instruction, so they only work for addresses in target system RAM.

If you have a third-party debugger, perform these tasks using its
interface.

See Also “To start or stop processor execution” on page 147
151

Chapter 1: Measurement Examples
Firmware Development
To capture startup execution

Possible uses:

• To verify boot code operation.

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.

You may also want to connect an emulation probe to the target system
microprocessor's debug port (either via a connector designed into the
target system or the connector provided on the analysis probe). The
emulation control tool set's reset/run control lets you make this
measurement without cycling power in your target system.

Capturing the Data 1. Stop microprocessor execution (either by turning OFF power to the target
system or using the emulation control tool set's Reset command).
152

Chapter 1: Measurement Examples
Firmware Development
2. Set up a trigger specification to trigger on anything and capture
everything.

3. Select the Run button to start the measurement.

4. Start microprocessor execution from its reset address (either by turning
power ON to the target system or by using the emulation control tool set’s
Reset and Run commands).
153

Chapter 1: Measurement Examples
Firmware Development
Displaying the Data 1. Use the Listing display to show the data that was captured when the target
system started up.

See Also “To start or stop processor execution” on page 147
154

Chapter 1: Measurement Examples
Firmware Development
Making Driver Development Measurements

• “To trigger on an 8-bit serial pattern” on page 155

• “To view serial data in parallel” on page 160

• “To capture driver execution (& view HW and SW)” on page 165

• “To capture execution up to a failure or halt” on page 171

• “To view bus activity” on page 174

• “To capture simple program messages” on page 175

• “To trigger on packet data (with DataComm Analysis)” on page 177

To trigger on an 8-bit serial pattern

Possible uses:

• To view system activity after pattern transmission.

• To look at system status when an error pattern is detected.

Probing the Target
System

1. Connect a logic analyzer probe to the target system's serial signal, and
connect the analyzer's clock input probe to the serial transmit/receive
clock signal.

2. Configure a state analysis machine and specify the serial transmit/receive
clock as the analyzer's clock input.

Or:

Configure a timing analysis machine and make the sample rate the same as
155

Chapter 1: Measurement Examples
Firmware Development
the serial transmit/receive clock.

3. Format a label for the signal on which you will look for the serial pattern.

Capturing the Data 1. Set up a trigger sequence where level 1 looks for the first logic level of the
pattern; when the pattern is found, level 2 looks for the second logic level
of the pattern, etc. If, in each of levels 2 through 8, the appropriate logic
156

Chapter 1: Measurement Examples
Firmware Development
level is not found, branch back to level 1 to start looking for the serial
pattern again.
157

Chapter 1: Measurement Examples
Firmware Development
158

Chapter 1: Measurement Examples
Firmware Development
To look look for longer (or shorter) patterns, use more (or fewer)
sequence levels.

2. Select the Run button to start the measurement.

Displaying the Data 1. When the analyzer triggers, use the Waveform display to show the 8-bit
serial pattern was captured.

If the analyzer never triggers, the serial pattern does not occur. Depending
on the level that was reached in the sequence above, you can see how
much (or how little) of the pattern was found.

See Also “To view serial data in parallel” on page 160

“If the trigger doesn't occur as expected” on page 309
159

Chapter 1: Measurement Examples
Firmware Development
To view serial data in parallel

Requirements:

• This measurement requires the serial to parallel tool set.

Possible uses:

• To view serial data in a format consistent with a particular protocol format.

Probing the Target
System

1. Connect a logic analyzer probe to the serial data signal, and connect the
serial data transmit (or receive, etc.) clock signal to one of the analyzer's
clock input channels.

2. Configure the logic analyzer as a state analyzer and use the serial transmit/
receive clock as the analyzer's clock input.

Or:

Configure the analyzer as a timing analyzer and use the Serial To Parallel
tool's Clock Recovery option.
160

Chapter 1: Measurement Examples
Firmware Development
3. Format a label for the serial data channel.

Capturing the Data 1. Set up a trigger specification to capture data on the serial channel. You
may want to trigger on a particular pattern and capture data that occurs
after that pattern.
161

Chapter 1: Measurement Examples
Firmware Development
2. Configure the measurement workspace so that the logic analyzer feeds the
Serial To Parallel tool, which in turn feeds the Listing display.

3. Open the Serial To Parallel tool and set up the type of conversion.
162

Chapter 1: Measurement Examples
Firmware Development
163

Chapter 1: Measurement Examples
Firmware Development
4. Select the Run button to start the measurement.

Displaying the Data 1. Open the Listing display window to see the results of the serial to parallel
conversion.

See Also “To trigger on an 8-bit serial pattern” on page 155
164

Chapter 1: Measurement Examples
Firmware Development
To capture driver execution (& view HW and SW)

Possible uses:

• To view and correlate driver software execution with hardware signals.

Probing the Target
System

1. Probe the microprocessor (using an analysis probe if possible).

2. Probe the peripheral with other logic analysis channels (and possibly a
probe adapter).

3. Configure a state analysis machine.
165

Chapter 1: Measurement Examples
Firmware Development
4. Select the state analyzer’s clock input.

5. Assign pods. Use one logic analyzer machine for analyzing the
microprocessor. Create another logic analysis machine for analyzing the
peripheral by specifying the Analyzer 2 type.

6. Specify the sampling options for the second logic analyzer machine.
166

Chapter 1: Measurement Examples
Firmware Development
7. Format labels for the signals that are probing the microprocessor.

8. Format labels for the signals that are probing the peripheral.
167

Chapter 1: Measurement Examples
Firmware Development
Capturing the Data 1. In each machine, set up the trigger and resources for the data you want to
capture.
168

Chapter 1: Measurement Examples
Firmware Development
2. Select the Run button to start measurements in each logic analyzer.

Displaying the Data 1. Use the Listing display to show the captured software execution and use
the Waveform display to show the captured hardware signals.
169

Chapter 1: Measurement Examples
Firmware Development
170

Chapter 1: Measurement Examples
Firmware Development
Each analyzer triggers according to its own setup. You can change this by
setting up one analyzer to be armed by another analyzer.

See Also “System Integration” on page 257 for information on coordinating the
collection of data with a group run or arming a measurement in one
machine by a trigger in the other.

To capture execution up to a failure or halt

Possible uses:

• To store and display all activity leading up to a system crash.
171

Chapter 1: Measurement Examples
Firmware Development
• To run the logic analyzer indefinitely until the Stop button is selected so
that you can observe system activity at your discretion.

Probing the Target
System

1. Configure a state analysis machine.

2. Select the state analyzer's clock input.

3. Format labels for the signals on which you will look for the event.
172

Chapter 1: Measurement Examples
Firmware Development
Capturing the Data 1. Use the "Run until user stop" trigger function.

2. Select the Run button to start the measurement.

3. When the system fails, crashes, or halts, select the Stop button to see
the states that were captured before the failure.

Displaying the Data 1. Use the Listing display to show the states that led up to the failure.
173

Chapter 1: Measurement Examples
Firmware Development
To view bus activity

Target system buses are good locations to view system activity and may
be the first place you look when isolating problems (especially in multi-
processor systems).

Requirements:

• This measurement requires an analysis probe for the standard bus you
wish to view.

Possible uses:

• To isolate system problems.

• To view and correlate activity on multiple buses.

• To view and correlate bus activity to microprocessor execution.

Probing the Target
System

1. Use a standard bus analysis probe to make the physical connection
between the logic analyzer and the bus.

2. Use the the configuration files included with the analysis probe to
configure the analyzer and format labels.

Capturing the Data 1. Set up a trigger specification using the labels defined by the analysis probe
configuration files.

Displaying the Data 1. Use the Listing display to view captured bus activity. If the standard bus
analysis probe provides an inverse assembler, you will see mnemonics for
174

Chapter 1: Measurement Examples
Firmware Development
bus commands, status, etc.

See Also “To analyze bus stability (with SPA)” on page 88

“To analyze bus occupation & bandwidth (with SPA)” on page 131

“To simulate bus occupation and measure SW performance” on page 287

To capture simple program messages

By adding program code that causes activity external to the processor
(also known as "instrumenting your code"), you can create specific
program message events that can be captured by the analyzer.

Possible uses:

• To view processor execution when the instruction cache is turned ON.

• To view higher-level program activity (like Real-Time OS function calls or
OS calls).

Probing the Target
System

1. Typically, you will use an analysis probe to connect the logic analyzer to
the microprocessor, and you will use the provided configuration files to
configure the analyzer and define labels.
175

Chapter 1: Measurement Examples
Firmware Development
Capturing the Data 1. Set up a trigger specification and use storage qualifiers that capture the
program messages you have coded into your programs.

2. Select the Run button to start the measurement.

Displaying the Data 1. Use the Listing display to view the captured program messages.
176

Chapter 1: Measurement Examples
Firmware Development
To trigger on packet data (with DataComm Analysis)

Requirements:

• The DataComm Analysis tool set.

• An Agilent Technologies 16715/16/17/18/19A logic analyzer module (and
its VisiTrigger capabilities).

Possible uses:

• To look at data traveling across parallel buses inside network switching
systems.
177

Chapter 1: Measurement Examples
Firmware Development
Probing the Target
System

1. Connect logic analyzer probe channels to:

• A communication data bus.

• Control signals that identify the start of packet, the packet data, and
the end of packet.

2. You also need to connect a logic analyzer CLK input channel to:

• A clock signal that identifies when the data bus and control signals are
valid and should be sampled by the logic analyzer.

3. Configure a (synchronous sampling) state analysis machine.

4. Select the state analyzer's clock input.
178

Chapter 1: Measurement Examples
Firmware Development
5. Format a DATA label for the logic analyzer channels that are probing the
data bus. Format 1-bit labels for the channels that are probing the start of
packet, packet data, and end of packet signals.

Capturing the Data 1. Select the "Find Packet" trigger function.
179

Chapter 1: Measurement Examples
Firmware Development
2. In the "Find Packet" trigger sequence level, select the bus button.

3. In the Bus Selector dialog, select the bus definition you want to use and
select the OK button.

4. Specify the packet event to find.

5. Select the Run button to start the measurement.

Displaying the Data 1. In the logic analyzer’s Listing window, load the INETWRKE network
protocol decoder inverse assembler.
180

Chapter 1: Measurement Examples
Firmware Development
2. View the captured data.
181

Chapter 1: Measurement Examples
Firmware Development
See Also Using the DataComm Analysis Toolset (see the DataComm Analysis
182

Chapter 1: Measurement Examples
Firmware Development
Toolset help volume)

Making Interrupt Service Routine
Measurements

• “To capture interrupt frequency and type” on page 183

• “To measure interrupt latency and execution time” on page 186

• “To simulate particular interrupt sequences” on page 191

• “To view the occurrence rate of an event (with SPA)” on page 192

To capture interrupt frequency and type

Possible uses:

• To analyze interrupt processing.

Probing the Target
System

1. Typically, you will use an analysis probe to connect the logic analyzer to
the microprocessor, and you will use the provided configuration files to
configure the analyzer and define labels.
183

Chapter 1: Measurement Examples
Firmware Development
Capturing the Data 1. The trigger specification will depend on the interrupt mechanism of your
microprocessor.

If your processor uses an interrupt vector table, set up a trigger
specification that only stores accesses to the interrupt vector table
locations.
184

Chapter 1: Measurement Examples
Firmware Development
2. Select the Run button to start the measurement.

Displaying the Data 1. In the Workspace window, add the Distribution display to view the
captured data.

If your trigger specification stored interrupt vector table accesses, the
captured table locations will show the interrupt types.
185

Chapter 1: Measurement Examples
Firmware Development
To measure interrupt latency and execution time

Possible uses:

• To see if interrupt processing meets specifications.

Probing the Target
System

1. Configure a state analysis machine.

2. Select the state analyzer's clock input.
186

Chapter 1: Measurement Examples
Firmware Development
3. Assign pods if necessary.

4. Format labels for the signals on which you will look for the event.
187

Chapter 1: Measurement Examples
Firmware Development
Capturing the Data 1. Set up a trigger specification that stores the state when the interrupt
signal becomes active, the interrupt service routine entry point, and the
interrupt routine exit point.
188

Chapter 1: Measurement Examples
Firmware Development
2. Make sure the analyzer is counting time.

3. Select the Run button to start the measurement.

Displaying the Data 1. Use the Listing display to view the captured states.
189

Chapter 1: Measurement Examples
Firmware Development
The relative time between the state where the interrupt signal became
active and the service routine entry shows the interrupt latency.

The relative time between the service routine entry and exit shows the
interrupt execution time.

See Also “To measure function execution time (with SPA)” on page 218
190

Chapter 1: Measurement Examples
Firmware Development
To simulate particular interrupt sequences

Requirements:

• This measurement requires a pattern generator module (Agilent
Technologies 16522A).

Possible uses:

• To test the processing of multiple interrupts.

Probing the Target
System

1. Connect pattern generator outputs to microprocessor interrupt inputs.

2. Configure the pattern generator to output the desired sequence of
interrupt signals.

3. Typically, you will use an analysis probe to connect the logic analyzer to
the microprocessor, and you will use the provided configuration files to
configure the analyzer and define labels.

Capturing the Data 1. Set up the trigger specification to capture the interrupt processing.

Displaying the Data 1. Use the Listing display to view the captured interrupt processing.

See Also “To generate pattern stimulus on devices” on page 75

“To generate patterns when a source line executes” on page 262
191

Chapter 1: Measurement Examples
Firmware Development
To view the occurrence rate of an event (with SPA)

Requirements:

• This measurement requires the system performance analyzer (SPA) tool
set.

Possible uses:

• To display interrupt loading.

• To measure the frequency at which data is acquired from sensors.

Probing the Target
System

1. Connect the logic analyzer to the target system signals on which you will
look for the event. You can use an analysis probe to connect the logic
analyzer to a microprocessor or standard bus.

2. Configure a state analysis machine. (If you are using an analysis probe, use
the provided configuration files to configure the analyzer and define
labels.)
192

Chapter 1: Measurement Examples
Firmware Development
3. Select the state analyzer’s clock input.

4. Assign pods if necessary.
193

Chapter 1: Measurement Examples
Firmware Development
5. Format labels for the signals on which you will look for the event.

Capturing the Data 1. Set up the logic analyzer trigger specification to capture the events you’re
interested in.
194

Chapter 1: Measurement Examples
Firmware Development
2. Select the Run button to start the measurement.

Displaying the Data 1. Use the system performance analyzer’s Time Overview display to show the
results of the measurement.
195

Chapter 1: Measurement Examples
Firmware Development
2. Define the event whose occurrence rate you wish to measure.
196

Chapter 1: Measurement Examples
Firmware Development
You can define both the event and the time period in which the events are
counted.
197

Chapter 1: Measurement Examples
Software Development
Software Development

Analyzing Real-Time Software Execution

• “To trace about a source line” on page 199

• “To trace function flow” on page 203

• “To trace callers of a function” on page 206

• “To trace execution within a function” on page 210

• “To measure function execution time” on page 214

• “To measure function execution time (with SPA)” on page 218

• “To omit monitor cycles from the trace” on page 223

• “To stop execution at a source line (in ROM)” on page 226

Analyzing Real-Time Variable Access

• “To find NULL pointer de-references” on page 229

• “To trace a variable's values” on page 231

• “To find where variables are accessed from” on page 236

• “To trace before a variable value” on page 240

• “To stop execution on a corrupt variable” on page 245

Analyzing Real-Time Memory Usage

• “To monitor stack or heap usage” on page 251

• “To find stack overflow or guarded memory access” on page 255

Analyzing Real-Time Software Execution

• “To trace about a source line” on page 199

• “To trace function flow” on page 203

• “To trace callers of a function” on page 206
198

Chapter 1: Measurement Examples
Software Development
• “To trace execution within a function” on page 210

• “To measure function execution time” on page 214

• “To measure function execution time (with SPA)” on page 218

• “To omit monitor cycles from the trace” on page 223

• “To stop execution at a source line (in ROM)” on page 226

To trace about a source line

Requirements:

• This measurement requires the source correlation tool set product. When
this product is installed, you can view high-level source files in a special
listing window.

Possible uses:

• To quickly capture and view execution around a particular high-level
source line.

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.
199

Chapter 1: Measurement Examples
Software Development
Capturing the Data 1. Download symbols from your target system program’s object module file.

2. Open the Source Viewer window.
200

Chapter 1: Measurement Examples
Software Development
3. Browse the source file that contains the line you want to trigger on.

4. Select the line you want to trigger on and choose the "Trigger after this
line" menu item.

NOTE: Source Viewer commands that set up triggers only modify the trigger
condition. They do not modify the trigger position, storage qualifiers, else
branch conditions, or other levels in the trigger sequence.
201

Chapter 1: Measurement Examples
Software Development
5. Select the Run button to start the measurement.

Displaying the Data 1. Open the Listing window to display the captured data. You may want to
load an inverse assembler and display symbols in the address label column.

2. You can use the Step Source Previous and Next buttons in the Source
Viewer window to browse the captured data by associated source lines.

See Also “To stop execution at a source line (in ROM)” on page 226

“To generate patterns when a source line executes” on page 262

“To trigger an oscilloscope when a source line executes” on page 294
202

Chapter 1: Measurement Examples
Software Development
To trace function flow

Possible uses:

• To view the execution order of routines.

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.

2. Load symbols from your program's object module file.
203

Chapter 1: Measurement Examples
Software Development
Capturing the Data 1. Set up a trigger specification that stores only the type of execution that
occurs when a function is entered.

For example, in the Motorola 68XXX microprocessors, the LINK
instruction is commonly used on function entry to set up a new stack
frame. In the PowerPC microprocessors, the "mfspr r0,lr" instruction is
commonly used at function entry.

Another way to identify function entry points is to add statements at the
beginning of functions that write to particular memory locations (also
known as instrumenting your code). This is the best way to identify
function entry points when instruction caches are turned ON.
204

Chapter 1: Measurement Examples
Software Development
2. Select the Run button to start the measurement.

Displaying the Data 1. Open the Listing display to view the captured execution. By viewing the
symbolic information associated with the captured states, you will see the
function execution sequence.
205

Chapter 1: Measurement Examples
Software Development
To trace callers of a function

Possible uses:
206

Chapter 1: Measurement Examples
Software Development
• To show the callers of a particular function.

• To find out from where an exception or task call originates.

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.

2. Load symbols from your program's object module file.

Capturing the Data 1. Set up a trace that captures and stores only entry into a particular function
and uses context store to store the states that occurred before entry into
the function.

If your logic analyzer doesn't have the context store feature, you can set
207

Chapter 1: Measurement Examples
Software Development
up a trigger sequence that stores a function’s exit and where the execution
returns to (which should identify the calling function).

2. Select the Run button to start the measurement.

Displaying the Data 1. Open the Listing window to view the captured execution. Include symbols
in the listing.
208

Chapter 1: Measurement Examples
Software Development
You can also open the Source Viewer window and use the Step Source
Previous and Next buttons to browse the captured data by associated
source lines.
209

Chapter 1: Measurement Examples
Software Development
To trace execution within a function

Possible uses:

• To capture more function execution data (because only function execution
states are stored in trace memory).

• To capture a "window" of program execution or look at consecutive
executions of a function.

• To store (and time) the execution of a memory management subroutine.

• To store (and time) an access to a disk drive.

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
format labels.
210

Chapter 1: Measurement Examples
Software Development
2. Load symbols from your program’s object module file.

Capturing the Data 1. Set up pattern resources that define the window start and window end
events.

2. Set up a trigger sequence where level 1, while storing no states, looks for
the window start event; when it’s found, the analyzer triggers. Level 2,
while storing all states, looks for the window end event. At this point, the
next sequence level can store no states (or you can branch back to the first
level and store consecutive windows of program execution).
211

Chapter 1: Measurement Examples
Software Development
3. Select the Run button to start the measurement.

Unless the window of program execution fills trace memory, you may have
to select the Stop button in order to display the captured states.

Displaying the Data 1. When the analyzer triggers, open the Listing window to show that the
window of program execution was captured.
212

Chapter 1: Measurement Examples
Software Development
If the analyzer never triggers, the window start event never occurs.

You can also open the Source Viewer window and use the Step Source
Previous and Next buttons to browse the captured data by associated
source lines.

See Also “If the trigger doesn't occur as expected” on page 309
213

Chapter 1: Measurement Examples
Software Development
To measure function execution time

Possible uses:

• To see if function execution times fall within specifications.

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.

2. Load symbols from your program's object module file.
214

Chapter 1: Measurement Examples
Software Development
Capturing the Data 1. Set up pattern resources that define function entry and exit events.

2. Set up a trigger specification that stores only the entry and exit states of
the function you’re interested in. (This is the same as looking at the
execution of a particular function, except only the entry and exit states are
stored.) Be sure to turn ON the time count.
215

Chapter 1: Measurement Examples
Software Development
3. Select the Run button to start the measurement.

Displaying the Data 1. Use the Listing display to show the captured function entry and exit
points. Count relative time to show relative function execution times.
216

Chapter 1: Measurement Examples
Software Development
You can use a global marker to search for the function exit states whose
relative time values show the function execution time.

See Also “To measure function execution time (with SPA)” on page 218

“To trace execution within a function” on page 210
217

Chapter 1: Measurement Examples
Software Development
To measure function execution time (with SPA)

The system performance analyzer’s Time Interval display gives you a
histogram of (and statistics on) event execution times.

Requirements:

• This measurement requires the system performance analyzer (SPA) tool
set.

Possible uses:

• To check how the execution time of a particular function varies.

• To determine if optimization of a function is needed.

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.
218

Chapter 1: Measurement Examples
Software Development
2. Load symbols from your program’s object module file.

Capturing the Data 1. Set up the logic analyzer trigger specification to capture only the entry and
exit points of a function.
219

Chapter 1: Measurement Examples
Software Development
2. Select the Run button to start the measurement.

Displaying the Data 1. In the Workspace window, use the system performance analyzer’s Time
Interval display to view the captured data.
220

Chapter 1: Measurement Examples
Software Development
2. Define the start and end of the event (that is, the function) whose time
variations you wish to measure.

3. Define buckets for captured time ranges.
221

Chapter 1: Measurement Examples
Software Development
4. View the measurement results.

See Also “To measure function execution time” on page 214
222

Chapter 1: Measurement Examples
Software Development
To omit monitor cycles from the trace

Use the emulator probe’s "in monitor" signal to block the logic
analyzer’s state clock.

Requirements:

• You need a signal to tell the logic analyzer when the processor is executing
in the monitor. The emulation probe provides such a signal.

Possible uses:

• To capture execution between a debugger's breakpoints.

Probing the Target
System

1. If you're using the emulation probe to provide the "in monitor" signal, set
up the emulation probe connection to the target system processor.
223

Chapter 1: Measurement Examples
Software Development
2. Also, configure the emulation probe to output its "in monitor" signal.

3. Connect the logic analyzer Port Out signal to one of the unused clock
inputs on the logic analyzer pods. (An Intermodule setup will be used to
route the emulation module’s "in monitor" signal to the logic analyzer’s
Port Out BNC connector.)

4. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.

Capturing the Data 1. Set up the Intermodule window so that Port Out is armed by the emulation
module.

2. Set up the trigger specification as you would normally, but also set up the
logic analyzer state clock to only occur when the "in monitor" signal is
false.
224

Chapter 1: Measurement Examples
Software Development
3. Select the Group Run button to start the trace measurement.

You can freely set breakpoints and examine the state of the
microprocessor knowing that the logic analyzer will not capture any of the
monitor cycles.

If your logic analyzer measurements count time, you’ll see large time
values in the trace when the microprocessor is executing in it’s debug
monitor mode.

Displaying the Data 1. Use the Listing display to the captured data. You may have to stop the
measurement to view captured data (if the events you’re capturing are
infrequent enough to allow breaks and monitor cycles to be captured
without clock qualification).
225

Chapter 1: Measurement Examples
Software Development
To stop execution at a source line (in ROM)

Normally, you would use a debugger to stop microprocessor execution
at a particular source line. However, if the debugger implements
breakpoints by replacing code (or some other mechanism that requires
code to be in RAM), you will not be able to set breakpoints on source
code that exists in ROM. Luckily, the logic analyzer can tell the
emulation probe to stop processor execution when it captures a
particular event.

Requirements:

• To make this measurement, you need a microprocessor run control
mechanism, like an emulation probe, that can stop microprocessor
execution when a trigger signal is received from the logic analyzer.

Possible uses:

• To stop microprocessor execution when debugger breakpoints cannot.

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.

2. Download program symbols to the logic analyzer and set up access to the
program source files.

3. Make sure the emulation probe (or emulation module and emulation
226

Chapter 1: Measurement Examples
Software Development
adapter) has been connected to the target system.

Capturing the Data 1. Set up the logic analyzer to trigger on the source line you’re interested in.

NOTE: Source Viewer commands that set up triggers only modify the trigger
condition. They do not modify the trigger position, storage qualifiers, else
branch conditions, or other levels in the trigger sequence.

2. In the Source Viewer window, choose the Trace->Enable - Break Emulator
227

Chapter 1: Measurement Examples
Software Development
On Trigger command.

This command will automatically set up the Intermodule window to specify
that the emulation module’s break input be armed by the logic analyzer’s
trigger.

3. Select the Group Run button to start the measurement.

Displaying the Data 1. When the logic analyzer trigger is found, microprocessor execution stops.

Note that microprocessor execution does not stop immediately after the
logic analyzer trigger because of delay in the intermodule signals and the
228

Chapter 1: Measurement Examples
Software Development
speed of the processor.

See Also “To trace about a source line” on page 199

“To stop execution on a corrupt variable” on page 245

Analyzing Real-Time Variable Access

• “To find NULL pointer de-references” on page 229

• “To trace a variable's values” on page 231

• “To find where variables are accessed from” on page 236

• “To trace before a variable value” on page 240

• “To stop execution on a corrupt variable” on page 245

To find NULL pointer de-references

Because a NULL pointer has particular address, commonly 0, you can
trace accesses of the NULL address to find NULL pointer de-
references.

Possible uses:

• To check for the possible cause of NULL pointer de-references.

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.
229

Chapter 1: Measurement Examples
Software Development
Capturing the Data 1. Set up to trigger on an access of address 0.

The states that are stored before the trigger may show a NULL pointer de-
reference.

2. Select the Run button to start the measurement.

Displaying the Data 1. If the analyzer triggers, open the Listing window to display the access of
address 0. You may want to load an inverse assembler, load symbols, and
display symbols in the address label column.

2. You can also open the Source Viewer window and use the Step Source
230

Chapter 1: Measurement Examples
Software Development
Previous and Next buttons to browse the captured data by associated
source lines.

To trace a variable’s values

Store only variable write accesses.

Possible uses:

• To look for inappropriate variable values (in memory locations, not local
variables on the stack or in microprocessor registers).

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.

2. Load symbols from your program's object module file.
231

Chapter 1: Measurement Examples
Software Development
Capturing the Data 1. Set up a trigger specification that stores only writes to the variable
addresses.
232

Chapter 1: Measurement Examples
Software Development
2. Select the Run button to start the measurement.

Displaying the Data 1. Open the Listing window to view the captured variable values.
233

Chapter 1: Measurement Examples
Software Development
In the Workspace window, you can also set up the Chart, Distribution, or
system performance analyzer displays for different views of the variable
values.
234

Chapter 1: Measurement Examples
Software Development
235

Chapter 1: Measurement Examples
Software Development
To find where variables are accessed from

By storing only writes to a variable and context storing instructions,
you will see the code that writes to the variable.

Possible uses:

• To find which functions access a global variable.

• To trace writers of a variable.

Probing the Target
System

1. Typically, this measurement is made with a state analyzer and an analysis
probe capturing software execution. Configure the analyzer and format
labels by loading the configuration files provided with the analysis probe.
236

Chapter 1: Measurement Examples
Software Development
2. Load symbols from your program’s object module file.

Capturing the Data 1. Set up a trigger specification to store only variable accesses and, for each
variable access, another state that indicates where the variable was
accessed from.

If the analyzer has context store capability, use it to store any instruction
fetch that occurs before the variable access.

If the analyzer doesn’t have context store capability, you can look for the
variable access and store any instruction fetch that occurs after the access.
237

Chapter 1: Measurement Examples
Software Development
2. Select the Run button to start the measurement.

Displaying the Data 1. Open the Listing window to display the captured data. You may want to
load an inverse assembler and display symbols in the address label column.
238

Chapter 1: Measurement Examples
Software Development
239

Chapter 1: Measurement Examples
Software Development
To trace before a variable value

Possible uses:

• To find the cause of a variable corruption.

• To find a variable value outside a specified range.

• To find when a variable equals a particular value.

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.

2. Load symbols from your program's object module file.
240

Chapter 1: Measurement Examples
Software Development
Capturing the Data 1. Set up a trigger specification that, while storing all states, looks for a
particular value being written to a variable. Make sure the trigger point
appears at the end of the trace.
241

Chapter 1: Measurement Examples
Software Development
2. Select the Run button to start the measurement.

Displaying the Data 1. Open the Listing window to view the execution that led to the write of the
particular value to the variable.
242

Chapter 1: Measurement Examples
Software Development
A correlated source viewer may be helpful in relating the execution to your
high-level program.
243

Chapter 1: Measurement Examples
Software Development
244

Chapter 1: Measurement Examples
Software Development
To stop execution on a corrupt variable

Possible uses:

• To inspect the state of the microprocessor at some point while capturing
the real-time execution that leads up to it.

Probing the Target
System

1. Use an emulation probe (either connected to a debug port in target system
or connected to an analysis probe) and some kind of debugging interface
(3rd party debugger, emulation control tool set, etc.).

2. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.
245

Chapter 1: Measurement Examples
Software Development
3. Load symbols from your program’s object module file.

4. Open the Intermodule window and set up the emulation probe to be armed
by the logic analyzer.
246

Chapter 1: Measurement Examples
Software Development
Capturing the Data 1. Set up the logic analyzer to trigger on variable address and a particular
data value write.
247

Chapter 1: Measurement Examples
Software Development
2. Select the Group Run button to start the measurement.

When the logic analyzer triggers, the emulation probe stops user program
execution and the processor continues to run in its background mode.
248

Chapter 1: Measurement Examples
Software Development
Displaying the Data 1. Use the Listing display to view the execution that leads up to the variable
write. (You may have to stop the measurement before you can display the
captured data.)
249

Chapter 1: Measurement Examples
Software Development
Note that processor execution doesn’t stop immediately after the variable
write and that additional cycles are executed before the processor is
halted.

See Also “To trace before a variable value” on page 240

“To stop execution at a source line (in ROM)” on page 226

Analyzing Real-Time Memory Usage

• “To monitor stack or heap usage” on page 251

• “To find stack overflow or guarded memory access” on page 255
250

Chapter 1: Measurement Examples
Software Development
To monitor stack or heap usage

Possible uses:

• To determine the necessary stack or heap size or view stack or heap usage.

• To look for stack or heap corruption.

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.

2. Load symbols from your program's object module file.
251

Chapter 1: Measurement Examples
Software Development
Capturing the Data 1. Set up a trigger specification that stores only writes into the range of
memory addresses reserved for the stack or heap.
252

Chapter 1: Measurement Examples
Software Development
2. Select the Run button to start the measurement.

Displaying the Data 1. In the Workspace window, you can use the Chart display to view the
addresses in the stack or heap range that were written to.

You can also use the Distribution display to view the address locations that
were written to and the number of number of writes that were made to
each location.
253

Chapter 1: Measurement Examples
Software Development
See Also “To find stack overflow or guarded memory access” on page 255
254

Chapter 1: Measurement Examples
Software Development
To find stack overflow or guarded memory access

Possible uses:

• To trace execution that leads to stack or heap overflow.

• To find accesses to non-existent memory or memory that should not be
accessed (in other words, guarded memory).

Probing the Target
System

1. Use an analysis probe to connect the logic analyzer to the microprocessor,
and use the provided configuration files to configure the analyzer and
define labels.
255

Chapter 1: Measurement Examples
Software Development
Capturing the Data 1. Set up the logic analyzer to trigger on accesses outside the range of the
stack or heap, or accesses of memory that does not exist, and store
execution that leads up to the bad access.

2. Select the Run button to start the measurement.

Displaying the Data 1. Open the Listing display and correlated Source Viewer window to view the
execution that led to the stack or heap overflow or the guarded memory
access.

See Also “To monitor stack or heap usage” on page 251
256

Chapter 1: Measurement Examples
System Integration
System Integration

Making Cross-Domain Measurements

• “To capture software execution when a scope triggers” on page 258

• “To generate patterns when a source line executes” on page 262

• “To arm one logic analyzer with another's trigger” on page 266

• “To arm a state machine with a timing machine trigger” on page 271

• “To arm an oscilloscope when the analyzer triggers” on page 277

Making System Profile Measurements

• “To isolate the root cause of a performance bottleneck” on page 283

• “To simulate bus occupation and measure SW performance” on
page 287

Isolating Critical Defects

• “To capture SW execution on a setup or hold violation” on page 289

• “To trigger an oscilloscope when a source line executes” on page 294

Making Cross-Domain Measurements

• “To capture software execution when a scope triggers” on page 258

• “To generate patterns when a source line executes” on page 262

• “To arm one logic analyzer with another's trigger” on page 266

• “To arm a state machine with a timing machine trigger” on page 271

• “To arm an oscilloscope when the analyzer triggers” on page 277
257

Chapter 1: Measurement Examples
System Integration
To capture software execution when a scope triggers

Possible uses:

• To check whether a signal anomaly is related to software execution.

Probing the Target
System

1. Connect the oscilloscope channel probe to the signal of interest in the
target system.

2. Open the oscilloscope display, select the Channels tab, and set up the
oscilloscope channel.

3. Configure a state analysis machine (with an analysis probe) to capture
software execution (pre-defined format is included with the analysis
probe).

Capturing the Data 1. Set up the oscilloscope to trigger on the signal edge of interest.

2. Open the Intermodule window, and set up the logic analyzer to be armed
by the oscilloscope trigger.
258

Chapter 1: Measurement Examples
System Integration
3. Set up the state analyzer to trigger on anything (after the arm).
259

Chapter 1: Measurement Examples
System Integration
Count time in the logic analyzer so that the captured data may be
correlated.

4. Select the Group Run button to start the measurement.

Displaying the Data 1. Use global markers to show the correlation between the oscilloscope
trigger and the captured software execution.
260

Chapter 1: Measurement Examples
System Integration
261

Chapter 1: Measurement Examples
System Integration
You can adjust the intermodule skew (in the Intermodule window) so that
the relation between the markers and the trigger points are the same in
the logic analyzer and in the oscilloscope.

You may want to open the Source Viewer window to view the source code
associated with the oscilloscope trigger.

See Also “To make basic oscilloscope measurements” on page 11

To generate patterns when a source line executes

Possible uses:

• To synchronize a sequence of target system test vectors.

Probing the Target
System

1. Configure a logic analyzer (with an analysis probe) for capturing software
execution by loading the configuration file that is included with the
analysis probe.

2. Select the pattern generator probing, connect the probes, map probe
channels to labels, configure the vector output mode and clock source, and
build a sequence of test vectors.

Capturing the Data 1. Set up the logic analyzer to trigger on the source line of interest.
262

Chapter 1: Measurement Examples
System Integration
2. Open the Intermodule window, and set up the pattern generator to be
armed by the logic analyzer trigger.
263

Chapter 1: Measurement Examples
System Integration
3. Set up the pattern generator to wait for the logic analyzer trigger before
outputting its test vectors.
264

Chapter 1: Measurement Examples
System Integration
4. Select the Group Run button to start the measurement.

Displaying the Data 1. You can use the Listing display to show the logic analyzer states captured
after the source line trigger.

The states captured after the trigger will show the target system’s
response to the pattern generator stimulus.

See Also “To generate pattern stimulus on devices” on page 75

“To simulate particular interrupt sequences” on page 191
265

Chapter 1: Measurement Examples
System Integration
To arm one logic analyzer with another’s trigger

Possible uses:

• To correlate execution in different parts of the target, for example,
software execution and standard bus execution, or software execution in
different parts of a multi-processor system.

Probing the Target
System

1. Configure each logic analyzer, set up the analyzer's sample clock input if
it's a state analyzer, and format labels for the logic analysis channels used.

Capturing the Data 1. Set up one logic analyzer to trigger on the event of interest.
266

Chapter 1: Measurement Examples
System Integration
2. Open the Intermodule window, and set up one logic analyzer to be armed
by the trigger of the other logic analyzer.
267

Chapter 1: Measurement Examples
System Integration
3. Set up the other logic analyzer’s trigger in terms of the arming signal it
receives from the first analyzer.
268

Chapter 1: Measurement Examples
System Integration
Count time in each logic analyzer so that the captured data displays may
be correlated.

4. Select the Group Run button to start the measurement.

Displaying the Data 1. Use the Listing or Waveform display tools to view the data captured by
each analyzer.
269

Chapter 1: Measurement Examples
System Integration
Use markers to correlate the data that was captured.

You can adjust the intermodule skew (in the Intermodule window) so that
the relation between the markers and the trigger points are the same in
both logic analyzers.
270

Chapter 1: Measurement Examples
System Integration
To arm a state machine with a timing machine trigger

Possible uses:

• To examine software execution when a timing violation occurs.

• To determine whether an incorrectly timed pulse is the result of a
hardware defect or an incorrectly programmed counter.

• To capture software execution and correlate it with separate bus timing
data or an I/O data stream.

Probing the Target
System

1. Configure a state analysis machine (with an analysis probe) to capture
software execution.
271

Chapter 1: Measurement Examples
System Integration
2. Select the state analyzer’s clock input.

3. Assign pods. Use one logic analyzer machine for analyzing the software
execution. Create another logic analysis machine for analyzing bus timing
data by specifying the Analyzer 2 type.
272

Chapter 1: Measurement Examples
System Integration
4. Specify the sampling options for the second logic analyzer machine.

5. Format state analyzer labels for the signals that capture software
execution.
273

Chapter 1: Measurement Examples
System Integration
6. Format timing analyzer labels for the signals that capture bus timing data.

Capturing the Data 1. Set up the timing analyzer to trigger on the timing event of interest.
274

Chapter 1: Measurement Examples
System Integration
2. Set up the state analyzer to trigger on anything, immediately after it is
armed.
275

Chapter 1: Measurement Examples
System Integration
Count time in the state analyzer so that the displays may be correlated.

3. Select the Run button to start the measurement.

Displaying the Data 1. Use the Waveform display to show the captured bus timing and use the
Listing display to show the captured software execution.
276

Chapter 1: Measurement Examples
System Integration
You can use markers to correlate software execution to what was captured
with the timing analyzer.

To arm an oscilloscope when the analyzer triggers

Possible uses:
277

Chapter 1: Measurement Examples
System Integration
• To view the analog parameters of a glitch captured by the logic analyzer.

Probing the Target
System

1. Configure the logic analyzer.

2. Format labels for the logic analyzer channels.

3. Connect the oscilloscope channel probes to the signals of interest in the
target system.

4. Open the oscilloscope display, select the Channels tab, and set up the
oscilloscope channels.

Capturing the Data 1. Set up the logic analyzer to trigger on the event of interest.

If the logic analyzer is configured as a state analyzer, be sure to count time
278

Chapter 1: Measurement Examples
System Integration
so that the measurement displays can be correlated.

2. Open the Intermodule window, and set up the oscilloscope to be armed by
the logic analyzer trigger.

3. Set up the oscilloscope to trigger immediately (after the arm).
279

Chapter 1: Measurement Examples
System Integration
4. Select the Group Run button to start the measurement.

Displaying the Data 1. Use global markers to show the correlation between the logic analyzer
trigger and the captured oscilloscope data.
280

Chapter 1: Measurement Examples
System Integration
281

Chapter 1: Measurement Examples
System Integration
You can adjust the intermodule skew (in the Intermodule window) so that
the relation between the markers and the trigger points are the same in
the logic analyzer and in the oscilloscope.

See Also “To make basic oscilloscope measurements” on page 11

Making System Profile Measurements

• “To isolate the root cause of a performance bottleneck” on page 283

• “To simulate bus occupation and measure SW performance” on page 287
282

Chapter 1: Measurement Examples
System Integration
To isolate the root cause of a performance bottleneck

Requirements:

• This measurement requires the system performance analyzer (SPA) tool
set.

Possible uses:

• To determine what's responsible for throughput bottlenecks.

• To detect which peripherals are most frequently used.

• To identify areas for performance improvements.

• To pinpoint regions of high memory activity.

• To measure program coverage.

• To measure stack usage.

• To isolate defects like invalid pointers.

Probing the Target
System

1. Use an analysis probe to probe the microprocessor or standard bus whose
performance you wish to analyze.

2. Load the configuration file included with the analysis probe to configure a
state analysis machine.

Capturing the Data 1. Set up a trigger specification to capture all bus cycles.
283

Chapter 1: Measurement Examples
System Integration
2. In the Workspace window, add the system performance analyzer to the
measurement set up.

3. Use the system performance analyzer’s State Overview display.

4. Set up the system performance analyzer to accumulate data and choose a
repetitive run.
284

Chapter 1: Measurement Examples
System Integration
5. Run the measurement (and, perhaps, stop the measurement if it’s running
repetitively) and view the results.

Displaying the Data 1. Expand buckets that show the most activity.

2. Select a bucket and use its information to correlate high activity to source
code.
285

Chapter 1: Measurement Examples
System Integration
286

Chapter 1: Measurement Examples
System Integration
To simulate bus occupation and measure SW performance

Requirements:

• This measurement requires a pattern generator module (Agilent
Technologies 16522A).

• This measurement requires the system performance analyzer (SPA) tool
set.

Possible uses:

• To test how potential bus arbitration sequences can affect software
performance.

Probing the Target
System

1. Connect pattern generator outputs to the appropriate bus interface
signals.

2. Configure the pattern generator to output the desired sequence of bus
arbitration signals.

3. Typically, you will use an analysis probe to connect the logic analyzer to
the microprocessor or standard bus, and you will use the provided
configuration files to configure the analyzer and define labels.

Capturing the Data 1. Set up the logic analyzer to capture all software execution as the pattern
generator simulates bus arbitration sequences.

You may want to set up an intermodule measurement to coordinate the
pattern generator stimulus and the logic analyzer's capture of the
response.

2. In the Workspace window, add the system performance analyzer to the
measurement set up.
287

Chapter 1: Measurement Examples
System Integration
3. Use the system performance analyzer’s State Overview display.

4. Run the measurement (and, perhaps, stop the measurement if it’s running
repetitively) and view the results.

Displaying the Data 1. Use the system performance analyzer’s State Overview display to show
which addresses have the most activity.

You may want to expand the buckets that have the most activity and look
at the bucket information to see the source code that’s responsible for the
activity.

See Also “To generate pattern stimulus on devices” on page 75

“To isolate the root cause of a performance bottleneck” on page 283

“To generate patterns when a source line executes” on page 262

Isolating Critical Defects

• “To capture SW execution on a setup or hold violation” on page 289

• “To trigger an oscilloscope when a source line executes” on page 294
288

Chapter 1: Measurement Examples
System Integration
To capture SW execution on a setup or hold violation

Possible uses:

• To see how setup or hold violations affect software execution.

Requirements:

• The Agilent Technologies 16517A 4GHz Timing/1GHz State Logic Analyzer
can look for setup and hold violations on multiple channels (for example, a
data bus).

Probing the Target
System

1. Connect the timing analyzer probes to the signals on which you are looking
for a setup or hold violation.

2. Connect the state analyzer probes to the processor whose software
execution you wish to capture. (Typically, you use an analysis probe to
probe a processor.)

3. Configure the timing analyzer and format labels for the signals of interest.

4. Configure the state analyzer to capture software execution. (Typically, you
use configuration files included with the analysis probe to configure and
format labels.)
289

Chapter 1: Measurement Examples
System Integration
Capturing the Data 1. Set up the timing analyzer to trigger on a setup or hold violation. (The
Agilent Technologies 16517A 4GHz Timing/1GHz State Logic Analyzer
includes a trigger function for capturing setup or hold violations.)

Count time in the logic analyzers so that the captured data may be
correlated.

2. Open the Intermodule window, and set up the logic analyzer to be armed
by the oscilloscope trigger.
290

Chapter 1: Measurement Examples
System Integration
3. Set up the state analyzer to trigger on anything (after the arm).
291

Chapter 1: Measurement Examples
System Integration
4. Select the Group Run button to start the measurement.

Displaying the Data 1. Use global markers to show the correlation between the timing analyzer
trigger and the captured software execution.
292

Chapter 1: Measurement Examples
System Integration
293

Chapter 1: Measurement Examples
System Integration
You can adjust the intermodule skew (in the Intermodule window) so that
the relation between the markers and the trigger points are the same in
the logic analyzer and in the oscilloscope.

You may want to open the Source Viewer window to view the source code
associated with the timing analyzer trigger.

See Also “To find setup and hold violations” on page 56

To trigger an oscilloscope when a source line executes

Possible uses:

• To see the effect of a certain type of software execution on signals. (For
example, do certain bus value changes cause ground bounce?)

Probing the Target
System

1. Configure a state analysis machine (with an analysis probe) to capture
software execution (pre-defined format is included with the analysis
probe).

2. Connect the oscilloscope channel probes to the signals of interest in the
target system.

3. Open the oscilloscope display, select the Channels tab, and set up the
oscilloscope channels.

Capturing the Data 1. Use the Source Viewer to set up a trigger on the software execution of
interest.
294

Chapter 1: Measurement Examples
System Integration
NOTE: Source Viewer commands that set up triggers only modify the trigger
condition. They do not modify the trigger position, storage qualifiers, else
branch conditions, or other levels in the trigger sequence.

Count time in the logic analyzer so that the captured data may be
correlated.

A dialog will inform you when the trigger has been set.

2. Open the Intermodule window, and set up the oscilloscope to be armed by
the logic analyzer trigger.
295

Chapter 1: Measurement Examples
System Integration
3. Set up the oscilloscope to trigger immediately (after the arm).
296

Chapter 1: Measurement Examples
System Integration
4. Select the Group Run button to start the measurement.

Displaying the Data 1. Use global markers to show the correlation between the logic analyzer
trigger and the captured oscilloscope data.
297

Chapter 1: Measurement Examples
System Integration
298

Chapter 1: Measurement Examples
System Integration
You can adjust the intermodule skew (in the Intermodule window) so that
the relation between the markers and the trigger points are the same in
the logic analyzer and in the oscilloscope.

See Also “To make basic oscilloscope measurements” on page 11
299

Chapter 1: Measurement Examples
Measurement Tips & Tricks
Measurement Tips & Tricks

• “Setting up 16715/16/17/18/19A triggers” on page 300

• “Setting up triggers in other logic analyzers” on page 302

• “Use trigger functions for easy measurement set up” on page 305

• “Modify trigger functions to build new measurements” on page 307

• “Know how processor execution affects measurements” on page 308

• “Getting the most out of trace memory” on page 309

• “If the trigger doesn't occur as expected” on page 309

Setting up 16715/16/17/18/19A triggers

In General... • Use trigger functions for basic measurements.

• For more complicated measurements, where no trigger function exists,
start with a trigger function that's similar to the measurement you want to
make. Then, break down the trigger function and edit the advanced trigger
sequence levels.
300

Chapter 1: Measurement Examples
Measurement Tips & Tricks
Timing Analyzer
Triggers

• Everything that looks like a button in the trigger definition gives you a way
to modify the trigger setup.

For example, to look for a edge instead of a pattern, select the button that
equates a label with a pattern and choose an edge comparison instead.

State Analyzer
Triggers

For every state analysis sample, a logic analyzer needs to know two
things:

1. Should some action (like a trigger) be taken as a result of this sample?

2. What should be done with this sample? That is, should it be stored in logic
analyzer memory or should it be discarded? (This question doesn't need to
be asked when using a timing analyzer because all samples are stored.)

State analysis trigger definitions are made simpler with a default

storage qualifier. This makes it possible to ignore, at all trigger
sequence levels, the question about what to do with the sample.

Of course, sometimes it’s useful to specify storage qualifiers at certain
levels in the trigger sequence. For this, you can insert storage actions
in trigger definitions everywhere there is a trigger or goto action.
Storage actions in the trigger definition override the default storage
qualifier. Storage actions can also be used to turn on or off the default
storing.
301

Chapter 1: Measurement Examples
Measurement Tips & Tricks
See also “Modify trigger functions to build new measurements” on page 307

“Setting up triggers in other logic analyzers” on page 302

Setting up triggers in other logic analyzers

There are differences in the way that triggers are set up between the
Agilent Technologies 16715/16/17/18/19A logic analyzers and other
logic analyzers.

Similarities • In both types of logic analyzers, you are first given the choice of using
trigger functions for trigger setup.
302

Chapter 1: Measurement Examples
Measurement Tips & Tricks
• Both types of logic analyzers also have a Settings tab for changing logic
analyzer options and a Save/Recall tab for saving trigger setups.

Differences • Patterns, edges, ranges, and timers are set up under their own tabs in the
older logic analyzers.
303

Chapter 1: Measurement Examples
Measurement Tips & Tricks
All editing of the trigger setup happens in these tabs and in the trigger
sequence level button menus.
304

Chapter 1: Measurement Examples
Measurement Tips & Tricks
See also “Setting up 16715/16/17/18/19A triggers” on page 300

Use trigger functions for easy measurement set
up

Many common measurement setups are provided with logic analyzers.
These setups are called trigger functions, and you can use them for
quick measurement setup.

You can use different trigger functions at different sequence step levels
to combine them into a single measurement.

To access trigger
functions

1. In the Trigger tab of a logic analyzer's Setup window, select the Trigger
Functions tab.
305

Chapter 1: Measurement Examples
Measurement Tips & Tricks
2. Select a trigger function, and select the Replace, Insert Before, or Insert
After button to move it to the trigger definition below.

3. In the trigger definition, specify the appropriate values and options, and
select the Close button.

See also “Modify trigger functions to build new measurements” on page 307
306

Chapter 1: Measurement Examples
Measurement Tips & Tricks
Modify trigger functions to build new
measurements

Break the trigger function down to see the measurement in terms of
the logic analyzer resources:

1. In Trigger window, break down the function from the Modify menu

Note that in a timing analyzer, the sample period and occurrence counts
can be used to measure time.

Once broken-down, you can modify a trigger function.
307

Chapter 1: Measurement Examples
Measurement Tips & Tricks
Know how processor execution affects
measurements

Instruction Cache When instruction caches are turned ON, a complete view of processor
execution cannot be viewed at the pins of the processor.

You can solve this problem by turning OFF instruction caches or by
instrumenting your code (adding instructions that cause activity that
can be viewed at the pins of the processor).

Chip Selects, MMUs,
Paged Memory

When MMUs or paged memory moves code to different locations in
memory, or when chip selects or reassigned address lines appear to
change code addresses, symbol values are no longer accurate.

The symbol tools require that a one-to-one mapping exists between
physical and logical addresses.

When chip selects reassign address lines, you may be able include them
in the ADDR label specification to re-create a one-to-one mapping.

Word Alignment When processors fetch multiple instructions (for example, byte
instructions in a word fetch, or burst mode fetches), not all instruction
addresses appear on the address bus. So, if you wanted to trigger on an
instruction address, it might never be seen on the address bus.

You can work around this problem by aligning symbols to the word (or
burst) boundary or by manually setting the lower address bits to 0 or X
(don’t care) in the trigger specification.

Note that the workaround could result in a trigger on an unexecuted
instruction (for example, if the previous instruction causes an
execution branch or jump).

Unexecuted
Prefetches

In processors that have prefetch queues and/or instruction pipelines,
some fetched instructions are not executed. And, you could trigger on
an instruction that isn’t executed.

Most inverse assemblers will flag unexecuted instructions with "nu" or
"-". Enhanced inverse assemblers let you filter away unexecuted
instructions from view.
308

Chapter 1: Measurement Examples
Measurement Tips & Tricks
To prevent false triggering, you can add an offset to addresses in the
trigger specification (where a capture of the offset address indicates
execution at the previous address). Another (less practical) way to
prevent false triggering is to add NOPs to code to account for prefetch
depth and pipelines.

Getting the most out of trace memory

Your strategy for capturing the right amount of data depends on the
amount of trace memory your logic analyzer has.

Using deep memory
analyzers

If trace memory is deep, you can capture all execution and use the
filtering tools to only display relevant data.

Using filter tools One strategy when using deep memory analyzers is to use the filtering
and display tools to look at different aspects of the captured data.

For example, if you use the deep memory analyzer to capture all
execution, you can use the Filter tool to isolate writes to a certain
variable and the Chart display to track the values that were written. Or,
you can use the Distribution display to see how the values vary.

Using storage
qualifiers in the
measurement

If the data you’re interested in appears infrequently and you are not
able to capture enough of it when all states are stored, you can use
storage qualifiers to store only the data you’re interested in.

Using the context
store feature found in
some analyzers

The context store feature stores events of interest plus the context
data before and after these events. These events plus their context
may occur far apart in time. There might be no way to capture a series
of these events, even with very deep analyzers, unless they have
context store.

If the trigger doesn’t occur as expected

You’ve set up a trigger specification that you believe will lead to a
trigger, and when you run the measurement, the trigger doesn’t occur.
309

Chapter 1: Measurement Examples
Measurement Tips & Tricks
Or, you’ve set up a trigger specification that will only lead to a trigger in
a error condition.

How do you tell what the logic analyzer is doing when the trigger
doesn’t occur? How do you know which parts of your trigger
specification the logic analyzer has or hasn’t seen?

There are a few strategies you can use when verifying or debugging
sequence level programming:

• Look at the run status message line or open the Run Status window. It will
tell you what level of the sequence the logic analyzer is in.

• Stop the measurement and look at the data that was captured. This is
particularly useful when you use storage qualifiers to store "no states" (or
only the states you're interested in) and the branches taken are stored.

• Save the trigger setup; then, simplify it to see what part of the sequence
does get captured. When you learn what needs to be modified, you can
recall the original trigger setup and make changes to it.
310

Glossary
absolute Denotes the time period
or count of states between a captured
state and the trigger state. An
absolute count of -10 indicates the
state was captured ten states before
the trigger state was captured.

acquisition Denotes one complete
cycle of data gathering by a
measurement module. For example,
if you are using an analyzer with
128K memory depth, one complete
acquisition will capture and store
128K states in acquisition memory.

analysis probe A probe connected
to a microprocessor or standard bus
in the device under test. An analysis
probe provides an interface between
the signals of the microprocessor or
standard bus and the inputs of the
logic analyzer. Also called a
preprocessor.

analyzer 1 In a logic analyzer with
two machines, refers to the machine
that is on by default. The default
name is Analyzer<N>, where N is
the slot letter.

analyzer 2 In a logic analyzer with
two machines, refers to the machine
that is off by default. The default
name is Analyzer<N2>, where N is
the slot letter.

arming An instrument tool must be

armed before it can search for its
trigger condition. Typically,
instruments are armed immediately
when Run or Group Run is selected.
You can set up one instrument to arm
another using the Intermodule

Window. In these setups, the second
instrument cannot search for its
trigger condition until it receives the
arming signal from the first
instrument. In some analyzer
instruments, you can set up one
analyzer machine to arm the other
analyzer machine in the Trigger

Window.

asterisk (*) See edge terms,
glitch, and labels.

bits Bits represent the physical logic
analyzer channels. A bit is a channel
that has or can be assigned to a label.
A bit is also a position in a label.

card This refers to a single
instrument intended for use in the
Agilent Technologies 16600A-series
or 16700A/B-series mainframes. One
card fills one slot in the mainframe. A
module may comprise a single card or
multiple cards cabled together.

channel The entire signal path from
the probe tip, through the cable and
module, up to the label grouping.

click When using a mouse as the
311

Glossary
pointing device, to click an item,
position the cursor over the item.
Then quickly press and release the
left mouse button.

clock channel A logic analyzer
channel that can be used to carry the
clock signal. When it is not needed
for clock signals, it can be used as a
data channel, except in the Agilent
Technologies 16517A.

context record A context record is
a small segment of analyzer memory
that stores an event of interest along
with the states that immediately
preceded it and the states that
immediately followed it.

context store If your analyzer can
perform context store
measurements, you will see a button
labeled Context Store under the
Trigger tab. Typical context store
measurements are used to capture
writes to a variable or calls to a
subroutine, along with the activity
preceding and following the events. A
context store measurement divides
analyzer memory into a series of
context records. If you have a 64K
analyzer memory and select a 16-
state context, the analyzer memory is
divided into 4K 16-state context
records. If you have a 64K analyzer
memory and select a 64-state
context, the analyzer memory will be
312
divided into 1K 64-state records.

count The count function records
periods of time or numbers of state
transactions between states stored in
memory. You can set up the analyzer
count function to count occurrences
of a selected event during the trace,
such as counting how many times a
variable is read between each of the
writes to the variable. The analyzer
can also be set up to count elapsed
time, such as counting the time spent
executing within a particular function
during a run of your target program.

cross triggering Using intermodule
capabilities to have measurement
modules trigger each other. For
example, you can have an external
instrument arm a logic analyzer,
which subsequently triggers an
oscilloscope when it finds the trigger
state.

data channel A channel that
carries data. Data channels cannot be
used to clock logic analyzers.

data field A data field in the pattern
generator is the data value associated
with a single label within a particular
data vector.

data set A data set is made up of all
labels and data stored in memory of
any single analyzer machine or

Glossary
instrument tool. Multiple data sets
can be displayed together when
sourced into a single display tool. The
Filter tool is used to pass on partial
data sets to analysis or display tools.

debug mode See monitor.

delay The delay function sets the
horizontal position of the waveform
on the screen for the oscilloscope and
timing analyzer. Delay time is
measured from the trigger point in
seconds or states.

demo mode An emulation control
session which is not connected to a
real target system. All windows can
be viewed, but the data displayed is
simulated. To start demo mode,
select Start User Session from the
Emulation Control Interface and
enter the demo name in the
Processor Probe LAN Name field.
Select the Help button in the Start

User Session window for details.

deskewing To cancel or nullify the
effects of differences between two
different internal delay paths for a
signal. Deskewing is normally done
by routing a single test signal to the
inputs of two different modules, then
adjusting the Intermodule Skew so
that both modules recognize the
signal at the same time.

device under test The system
under test, which contains the
circuitry you are probing. Also known
as a target system.

don’t care For terms, a "don’t care"
means that the state of the signal
(high or low) is not relevant to the
measurement. The analyzer ignores
the state of this signal when
determining whether a match occurs
on an input label. "Don’t care" signals
are still sampled and their values can
be displayed with the rest of the data.
Don’t cares are represented by the X
character in numeric values and the
dot (.) in timing edge specifications.

dot (.) See edge terms, glitch,
labels, and don’t care.

double-click When using a mouse
as the pointing device, to double-click
an item, position the cursor over the
item, and then quickly press and
release the left mouse button twice.

drag and drop Using a Mouse:
Position the cursor over the item, and
then press and hold the left mouse

button. While holding the left mouse
button down, move the mouse to
drag the item to a new location. When
the item is positioned where you
want it, release the mouse button.
313

Glossary
Using the Touchscreen:
Position your finger over the item,
then press and hold finger to the
screen. While holding the finger
down, slide the finger along the
screen dragging the item to a new
location. When the item is positioned
where you want it, release your
finger.

edge mode In an oscilloscope, this
is the trigger mode that causes a
trigger based on a single channel
edge, either rising or falling.

edge terms Logic analyzer trigger
resources that allow detection of
transitions on a signal. An edge term
can be set to detect a rising edge,
falling edge, or either edge. Some
logic analyzers can also detect no
edge or a glitch on an input signal.
Edges are specified by selecting
arrows. The dot (.) ignores the bit.
The asterisk (*) specifies a glitch on
the bit.

emulation module A module
within the logic analysis system
mainframe that provides an
emulation connection to the debug
port of a microprocessor. An E5901A
emulation module is used with a
target interface module (TIM) or an
analysis probe. An E5901B emulation
module is used with an E5900A
emulation probe.
314
emulation probe The stand-alone
equivalent of an emulation module.
Most of the tasks which can be
performed using an emulation
module can also be performed using
an emulation probe connected to
your logic analysis system via a LAN.

emulator An emulation module or
an emulation probe.

Ethernet address See link-level

address.

events Events are the things you
are looking for in your target system.
In the logic analyzer interface, they
take a single line. Examples of events
are Label1 = XX and Timer 1 > 400

ns.

filter expression The filter
expression is the logical OR
combination of all of the filter terms.
States in your data that match the
filter expression can be filtered out or
passed through the Pattern Filter.

filter term A variable that you
define in order to specify which
states to filter out or pass through.
Filter terms are logically OR’ed
together to create the filter
expression.

Format The selections under the
logic analyzer Format tab tell the

Glossary
logic analyzer what data you want to
collect, such as which channels
represent buses (labels) and what
logic threshold your signals use.

frame The Agilent Technologies
16600A-series or 16700A/B-series
logic analysis system mainframe. See
also logic analysis system.

gateway address An IP address
entered in integer dot notation. The
default gateway address is 0.0.0.0,
which allows all connections on the
local network or subnet. If
connections are to be made across
networks or subnets, this address
must be set to the address of the
gateway machine.

glitch A glitch occurs when two or
more transitions cross the logic
threshold between consecutive
timing analyzer samples. You can
specify glitch detection by choosing
the asterisk (*) for edge terms under
the timing analyzer Trigger tab.

grouped event A grouped event is
a list of events that you have
grouped, and optionally named. It can
be reused in other trigger sequence
levels. Only available in Agilent
Technologies 16715A, 16716A, and
16717A logic analyzers.

held value A value that is held until

the next sample. A held value can
exist in multiple data sets.

immediate mode In an
oscilloscope, the trigger mode that
does not require a specific trigger
condition such as an edge or a
pattern. Use immediate mode when
the oscilloscope is armed by another
instrument.

interconnect cable Short name for
module/probe interconnect cable.

intermodule bus The intermodule
bus (IMB) is a bus in the frame that
allows the measurement modules to
communicate with each other. Using
the IMB, you can set up one
instrument to arm another. Data
acquired by instruments using the
IMB is time-correlated.

intermodule Intermodule is a term
used when multiple instrument tools
are connected together for the
purpose of one instrument arming
another. In such a configuration, an
arming tree is developed and the
group run function is designated to
start all instrument tools. Multiple
instrument configurations are done in
the Intermodule window.

internet address Also called
Internet Protocol address or IP
address. A 32-bit network address. It
315

Glossary
is usually represented as decimal
numbers separated by periods; for
example, 192.35.12.6. Ask your LAN
administrator if you need an internet
address.

labels Labels are used to group and
identify logic analyzer channels. A
label consists of a name and an
associated bit or group of bits. Labels
are created in the Format tab.

line numbers A line number (Line
#s) is a special use of symbols. Line
numbers represent lines in your
source file, typically lines that have
no unique symbols defined to
represent them.

link-level address Also referred to
as the Ethernet address, this is the
unique address of the LAN interface.
This value is set at the factory and
cannot be changed. The link-level
address of a particular piece of
equipment is often printed on a label
above the LAN connector. An
example of a link-level address in
hexadecimal: 0800090012AB.

local session A local session is
when you run the logic analysis
system using the local display
connected to the product hardware.

logic analysis system The Agilent
Technologies 16600A-series or
316
16700A/B-series mainframes, and all
tools designed to work with it.
Usually used to mean the specific
system and tools you are working
with right now.

machine Some logic analyzers allow
you to set up two measurements at
the same time. Each measurement is
handled by a different machine. This
is represented in the Workspace
window by two icons, differentiated
by a 1 and a 2 in the upper right-hand
corner of the icon. Logic analyzer
resources such as pods and trigger
terms cannot be shared by the
machines.

markers Markers are the green and
yellow lines in the display that are
labeled x, o, G1, and G2. Use them to
measure time intervals or sample
intervals. Markers are assigned to
patterns in order to find patterns or
track sequences of states in the data.
The x and o markers are local to the
immediate display, while G1 and G2
are global between time correlated
displays.

master card In a module, the
master card controls the data
acquisition or output. The logic
analysis system references the
module by the slot in which the
master card is plugged. For example,
a 5-card Agilent Technologies 16555D

Glossary
would be referred to as Slot C:

machine because the master card is
in slot C of the mainframe. The other
cards of the module are called
expansion cards.

menu bar The menu bar is located
at the top of all windows. Use it to
select File operations, tool or system
Options, and tool or system level
Help.

message bar The message bar
displays mouse button functions for
the window area or field directly
beneath the mouse cursor. Use the
mouse and message bar together to
prompt yourself to functions and
shortcuts.

module/probe interconnect cable

The module/probe interconnect cable
connects an E5901B emulation
module to an E5900B emulation
probe. It provides power and a serial
connection. A LAN connection is also
required to use the emulation probe.

module An instrument that uses a
single timebase in its operation.
Modules can have from one to five
cards functioning as a single
instrument. When a module has more
than one card, system window will
show the instrument icon in the slot
of the master card.

monitor When using the Emulation
Control Interface, running the
monitor means the processor is in
debug mode (that is, executing the
debug exception) instead of
executing the user program.

panning The action of moving the
waveform along the timebase by
varying the delay value in the Delay
field. This action allows you to
control the portion of acquisition
memory that will be displayed on the
screen.

pattern mode In an oscilloscope,
the trigger mode that allows you to
set the oscilloscope to trigger on a
specified combination of input signal
levels.

pattern terms Logic analyzer
resources that represent single states
to be found on labeled sets of bits; for
example, an address on the address
bus or a status on the status lines.

period (.) See edge terms, glitch,
labels, and don’t care.

pod pair A group of two pods
containing 16 channels each, used to
physically connect data and clock
signals from the unit under test to the
analyzer. Pods are assigned by pairs
in the analyzer interface. The number
of pod pairs avalaible is determined
317

Glossary
by the channel width of the
instrument.

pod See pod pair

point To point to an item, move the
mouse cursor over the item, or
position your finger over the item.

preprocessor See analysis probe.

primary branch The primary
branch is indicated in the Trigger

sequence step dialog box as either
the Then find or Trigger on
selection. The destination of the
primary branch is always the next
state in the sequence, except for the
Agilent Technologies 16517A. The
primary branch has an optional
occurrence count field that can be
used to count a number of
occurrences of the branch condition.
See also secondary branch.

probe A device to connect the
various instruments of the logic
analysis system to the target system.
There are many types of probes and
the one you should use depends on
the instrument and your data
requirements. As a verb, "to probe"
means to attach a probe to the target
system.

processor probe See emulation

probe.
318
range terms Logic analyzer
resources that represent ranges of
values to be found on labeled sets of
bits. For example, range terms could
identify a range of addresses to be
found on the address bus or a range
of data values to be found on the data
bus. In the trigger sequence, range
terms are considered to be true when
any value within the range occurs.

relative Denotes time period or
count of states between the current
state and the previous state.

remote display A remote display is
a display other than the one
connected to the product hardware.
Remote displays must be identified to
the network through an address
location.

remote session A remote session is
when you run the logic analyzer using
a display that is located away from
the product hardware.

right-click When using a mouse for
a pointing device, to right-click an
item, position the cursor over the
item, and then quickly press and
release the right mouse button.

sample A data sample is a portion of
a data set, sometimes just one point.
When an instrument samples the
target system, it is taking a single

Glossary
measurement as part of its data
acquisition cycle.

Sampling Use the selections under
the logic analyzer Sampling tab to tell
the logic analyzer how you want to
make measurements, such as State
vs. Timing.

secondary branch The secondary
branch is indicated in the Trigger

sequence step dialog box as the Else

on selection. The destination of the
secondary branch can be specified as
any other active sequence state. See
also primary branch.

session A session begins when you
start a local session or remote

session from the session manager,
and ends when you select Exit from
the main window. Exiting a session
returns all tools to their initial
configurations.

skew Skew is the difference in
channel delays between
measurement channels. Typically,
skew between modules is caused by
differences in designs of
measurement channels, and
differences in characteristics of the
electronic components within those
channels. You should adjust
measurement modules to eliminate
as much skew as possible so that it
does not affect the accuracy of your

measurements.

state measurement In a state
measurement, the logic analyzer is
clocked by a signal from the system
under test. Each time the clock signal
becomes valid, the analyzer samples
data from the system under test.
Since the analyzer is clocked by the
system, state measurements are
synchronous with the test system.

store qualification Store
qualification is only available in a
state measurement, not timing

measurements. Store qualification
allows you to specify the type of
information (all samples, no samples,
or selected states) to be stored in
memory. Use store qualification to
prevent memory from being filled
with unwanted activity such as no-
ops or wait-loops. To set up store
qualification, use the While storing
field in a logic analyzer trigger
sequence dialog.

subnet mask A subnet mask blocks
out part of an IP address so that the
networking software can determine
whether the destination host is on a
local or remote network. It is usually
represented as decimal numbers
separated by periods; for example,
255.255.255.0. Ask your LAN
administrator if you need a the
subnet mask for your network.
319

Glossary
symbols Symbols represent
patterns and ranges of values found
on labeled sets of bits. Two kinds of
symbols are available:

• Object file symbols - Symbols
from your source code, and
symbols generated by your
compiler. Object file symbols may
represent global variables,
functions, labels, and source line
numbers.

• User-defined symbols - Symbols
you create.

Symbols can be used as pattern and
range terms for:

• Searches in the listing display.

• Triggering in logic analyzers and
in the source correlation trigger
setup.

• Qualifying data in the filter tool
and system performance analysis
tool set.

system administrator The system
administrator is a person who
manages your system, taking care of
such tasks as adding peripheral
devices, adding new users, and doing
system backup. In general, the
system administrator is the person
you go to with questions about
implementing your software.
320
target system The system under
test, which contains the
microprocessor you are probing.

terms Terms are variables that can
be used in trigger sequences. A term
can be a single value on a label or set
of labels, any value within a range of
values on a label or set of labels, or a
glitch or edge transition on bits
within a label or set of labels.

TIM A TIM (Target Interface
Module) makes connections between
the cable from the emulation module
or emulation probe and the cable to
the debug port on the system under
test.

time-correlated Time correlated
measurements are measurements
involving more than one instrument
in which all instruments have a
common time or trigger reference.

timer terms Logic analyzer
resources that are used to measure
the time the trigger sequence
remains within one sequence step, or
a set of sequence steps. Timers can
be used to detect when a condition
lasts too long or not long enough.
They can be used to measure pulse
duration, or duration of a wait loop. A
single timer term can be used to
delay trigger until a period of time
after detection of a significant event.

Glossary
timing measurement In a timing
measurement, the logic analyzer
samples data at regular intervals
according to a clock signal internal to
the timing analyzer. Since the
analyzer is clocked by a signal that is
not related to the system under test,
timing measurements capture traces
of electrical activity over time. These
measurements are asynchronous
with the test system.

tool icon Tool icons that appear in
the workspace are representations of
the hardware and software tools
selected from the toolbox. If they are
placed directly over a current
measurement, the tools automatically
connect to that measurement. If they
are placed on an open area of the
main window, you must connect them
to a measurement using the mouse.

toolbox The Toolbox is located on
the left side of the main window. It is
used to display the available
hardware and software tools. As you
add new tools to your system, their
icons will appear in the Toolbox.

tools A tool is a stand-alone piece of
functionality. A tool can be an
instrument that acquires data, a
display for viewing data, or a post-
processing analysis helper. Tools are
represented as icons in the main
window of the interface.

trace See acquisition.

trigger sequence A trigger
sequence is a sequence of events that
you specify. The logic analyzer
compares this sequence with the
samples it is collecting to determine
when to trigger.

trigger specification A trigger
specification is a set of conditions
that must be true before the
instrument triggers.

trigger Trigger is an event that
occurs immediately after the
instrument recognizes a match
between the incoming data and the
trigger specification. Once trigger
occurs, the instrument completes its
acquisition, including any store
qualification that may be specified.

workspace The workspace is the
large area under the message bar and
to the right of the toolbox. The
workspace is where you place the
different instrument, display, and
analysis tools. Once in the workspace,
the tool icons graphically represent a
complete picture of the
measurements.

zooming In the oscilloscope or
timing analyzer, to expand and
contract the waveform along the time
base by varying the value in the s/Div
321

Glossary
field. This action allows you to select
specific portions of a particular
waveform in acquisition memory that
will be displayed on the screen. You
can view any portion of the waveform
record in acquisition memory.
322

Index
Numerics

16715A triggers, setting up, 300
16716A triggers, setting up, 300
16717A triggers, setting up, 300
16718A triggers, setting up, 300
16719A triggers, setting up, 300

A

accessing memory, 137
accumulate mode in SPA tool set,

88
activity, bus, 174
address alignment, 199
address lines, reassigned, 308
address offset, 199
address range, execution leaves, 28
aligning symbols, 308
alignment, address, 199
analog domain, 11
analysis probe (standard bus), 174
application software developers, 2
arm, 271, 277
automate emulation probe

commands, 140

B

bandwidth, evaluating, 131
boot code, 152
boot code, downloading, 144
boot code, testing, 143
bottleneck, performance, 283
break down trigger functions, 307
breakpoints, capturing execution

between, 223
breakpoints, stop processor

execution using, 149
buckets, time, 88
bus activity, 174
bus arbitration sequences, 287
bus contention, 40, 72
bus mode in SPA tool set, 88
bus occupation, 131

bus occupation, simulating, 287
bus stability, 88
bus transactions, 88

C

cache (instruction) ON, 175
cache, instruction, 175
cache, secondary, 116
callers of a function, 206
chip selects, 308
code (boot), downloading, 144
code download, initializing

registers before, 137
code instrumentation, 175, 308
communications channel, 40, 72
Compare tool, 51
component stress conditions, 51
conformance to specifications, 51
conformance to specifications,

measuring, 50
consecutive sequence of events,

105
context store, 206
context store on variable accesses,

236
control signals, 32
correlated data, 266
correlated displays, 45, 165, 174,

258, 262, 271, 294
correlated source viewer, 236
corruption, stack or heap, 251
coverage measurements, 283
critical defects, isolating, 288
cross-domain measurements, 257
crosstalk, 11
cycles, extra, 116
cycles, monitor, 223

D

data from remote device, 59
data request interrupt, 116
data setup specifications, 36
data strobe, 88
debug port, 137
debugger breakpoints, 226
debugger breakpoints, capturing

execution between, 223
debugger, third party, 137
deep memory analyzers, 309
defect isolation, 283
download boot code, 144
download, initializing registers

before, 137
DRAM row/column address

strobes, 20
driver development, 155
driver execution, 165
driver writers, 2
droop, 11

E

edges (signal), 16
edges too close, 20
edges too far, 20
emulation control tool set, 137
emulation probe as test tool, 140
end of packet, 177
enhanced inverse assemblers, 308
entry and exit, function, 214
event occurrence rates, 192
event, store N samples, 100
events (SPA), viewing, 88
events, Nth occurrence, 96
events, sequence of, 105
exception, routine that causes, 206
execution (processor), how

measurements are affected by,
308

execution (processor), start/stop,
147

execution (processor), stop using
breakpoints, 149

execution leaves address range, 28
execution order, 203
323

Index
execution time, 186
execution time, function, 214
execution time, software, 218
execution, driver, 165
execution, window of, 210
exercising the microprocessor, 136
extra cycles, 116

F

failure or halt, capturing execution
up to, 171

fall time, 11
filter, 111
filter tools, 309
Find Packet trigger function, 177
firmware developers, 2
firmware development, 2, 143
flip-flops, 56
frequency of interrupts, 183
function entry and exit, 214
function execution time, 214, 218
function statement, 210
function, callers of, 206
functions (trigger), modifying, 307
functions, trigger, 305

G

glitch/edge resource, 36
glitches, 45
glitches (signal), 16
global markers, 214
global variable accesses, context

store, 236
ground bounce, 11
guarded memory, 255

H

handshake violation, 67
hardware breakpoints, 149
hardware designers, 2
hardware turn-on, 2, 10
heap corruption, 251
324
heap overflow, 255
heap usage, 251
holding off trigger, 32

I

I/O accesses, 140
I/O read, context store, 236
initializing registers, 137
initializing registers before

download, 137
instability, bus, 88
instruction cache, 308
instruction cache ON, 175
instruction pipelines, 308
instrumenting code, 175, 308
intermodule skew, 266
interrupt exceptions, 206
interrupt frequency and type, 183
interrupt latency, 186
interrupt loading, 192
interrupt response time, 59
interrupt routine, 116
interrupt sequence simulation, 191
interrupt service routines, 183
interrupt, data request, 116
invalid pointers, 283
inverse assemblers, 308
isolating defects, 283

J

jitter, 81

K

known-good circuitry, 51

L

latches, 56
latency, interrupt, 186
loop (program) exit, 111
M

main system help, 2
markers, 20, 271
markers, global, 214
measurements, how processor

execution affects, 308
measurements, parametric, 11
measuring software performance,

287
measuring time, 28
memory (trace), 100, 120, 210
memory accesses, 140
memory activity, 283
memory elements, 56
memory refresh routine, 120
memory select line, 36
memory usage, 250
memory write cycles, 120
memory, accessing, 137
memory, consecutive reads, 116
memory, guarded or non-existent,

255
memory, specific write to, 96
memory, stack or heap, 251
memory, trace, 309
memory, writes to consecutive

locations, 105
microprocessor on-chip debug

circuitry, 137
microprocessor, exercising the,

136
MMUs, 308
modifying trigger functions, 307
monitor cycles, omitting from

trace, 223
monitor loop, 111
monitor variable values, 231
multi-processor systems, 266

N

network protocol decoder inverse
assembler, 177

Index
network switching systems, 177
noise, 11
non-consecutive sequence of

events, 105
non-existent memory, 255
NOPs, adding to code, 308
Nth occurrence of an event, 96
Nth transition, 24
NULL pointer de-references, 229

O

occurrence rate of events, 192
offset, address, 199
offsets, adding to trigger spec.

addresses, 308
omitting monitor cycles, 223
on-chip (microprocessor) debug

circuitry, 137
OS calls, 175
oscilloscope measurements, 11
out of range, variable, 240
overshoot, 11

P

packet data, 177
packet data, triggering on, 177
paged memory, 308
parallel, serial data to, 160
parametric measurements, 11
pattern generation, 75
pattern generator, 191, 287
pattern generator, starting on

source line, 262
pattern resource, 32, 36
pattern stops, 28
pattern, stable, 16
patterns (signal), 16
performance bottleneck, 283
peripheral usage, 283
physical layer protocol, 177
pipelines (instruction), 308
PLD control signal violation, 67

pointers, invalid, 283
prefetches, unexecuted, 308
processor execution, how

measurements are affected by,
308

processor execution, start/stop,
147

processor execution, stop using
breakpoints, 149

profile, system, 282
program coverage measurements,

283
program execution, window of, 210
program flow, 125
program loop exit, 111
program messages, 175
protocol violation, 116
pulse, 271
pulse width, 11
pulse width specifications, 63

R

Real-Time OS (RTOS), 175
reassigned address lines, 308
reference buffer, 51
refresh (memory) routine, 120
register accesses, 140
registers, initializing, 137
registers, initializing before

download, 137
ringing, 11
rise, 11
rise time, 11
root cause of noise, crosstalk, or

ground bounce, 11
root cause of performance

bottleneck, 283
routine executes before another,

203
routine that causes task or

exception, 206
routine, memory refresh, 120
S

scope measurements, 11
searching for states with markers,

214
secondary cache, 116
sensors, frequency of data acquired

from, 192
sequence of events, 105
serial data to parallel, 160
serial pattern, 155
setting up 16715A triggers, 300
setting up 16716A triggers, 300
setting up 16717A triggers, 300
setting up 16718A triggers, 300
setting up 16719A triggers, 300
setting up triggers, 302
setup or hold violation, 56
setup or hold violation, capturing

software execution at, 289
signal edges, 16
signal inactivity, 28
signal parameters, 11
signal patterns, 16
simulate bus occupation, 287
simulating interrupt sequences,

191
software breakpoints, 149
software code analysis, 198
software developers, 2
software development, 2, 198
software execution and standard

bus execution, 266
software execution time, 218
software execution, capturing at

oscilloscope trigger, 258
software performance, measuring,

287
source line, stopping execution at,

226
source line, trace about, 199
source line, trigger oscilloscope on,

294
source viewer, 206
325

Index
SPA displays, State Overview, 283
SPA displays, Time Overview, 192
SPA events, viewing, 88
specifications, conformance to, 51
specifications, measuring

conformance, 50
stability, bus, 88
stable pattern, 16
stack corruption, 251
stack frame, 203
stack overflow, 255
stack usage, 251, 283
standard bus, 174
standard bus execution and

software execution, 266
start of packet, 177
start processor execution, 147
startup execution, 152
state events, 96
state machine, 271
State Overview SPA display, 283
stimulus generation, 75
stop processor execution, 147
stop processor execution using

breakpoints, 149
storage qualifiers, 309
store N samples, 100
stress conditions (component), 51
strobe signals, 88
subroutine exits prematurely, 116
subroutine, time critical, 116
symbols, aligning, 308
system crash, capturing execution

up to, 171
system integration, 2, 257
system integrators, 2
system profile, 282

T

task, routine that causes, 206
test tool, emulation probe, 140
third-party debugger, 137
326
throughput bottlenecks, 283
time dispersion, 81
Time Overview SPA display, 192
time, interrupt execution, 186
time, measuring, 28
time, software execution, 218
time-correlated data, 266
time-correlated displays, 45, 165,

174, 258, 262, 271, 294
timing machine, 271
timing violation, 271
TimingZoom display, 45
tips and tricks, 300
too close, events that occur, 116
too far, events that occur, 116
trace memory, 100, 120, 210, 309
trace, omitting monitor cycles, 223
transactions, bus, 88
trigger doesntoccur’, 309
trigger functions, 302, 305
trigger functions, modifying, 307
trigger, holding off, 32
triggering on network packet data,

177
triggers, setting up, 302
triggers, setting up 16715A, 300
triggers, setting up 16716A, 300
triggers, setting up 16717A, 300
triggers, setting up 16718A, 300
triggers, setting up 16719A, 300
type of interrupts, 183

U

unexecuted prefetches, 308

V

variable accesses, context store,
236

variable corruption, 240
variable equals value, break

execution when, 245
variable out of range, 240
variable values, monitoring, 231
variable, writers of, 236
variables, analyzing, 229
view SPA events, 88
VisiTrigger capabilities, 177

W

window of program execution, 210
word alignment, 308
write cycles, 120
writers of a variable, 236

	System: Measurement Examples
	Measurement Examples
	Contents
	Measurement Examples
	Contents
	Hardware Turn-On
	Looking at Signal Parameters
	To make basic oscilloscope measurements

	Looking at Signal Edges, Patterns, and Glitches
	To trigger on a stable pattern
	To find edges that are too close or too far
	To find the Nth transition of a signal
	To find when a signal or pattern stops
	To delay capture after a pattern
	To find an edge during a valid pattern
	To find a pattern, an edge, and another pattern
	To find signal glitches

	Measuring Conformance to Specifications
	To measure conformance to specs (with the Compare tool)
	To find setup and hold violations
	To trigger if a pattern doesn't follow an edge
	To verify pulse widths
	To trigger on a violation of an edge sequence
	To trigger when two edges are asserted simultaneously
	To generate pattern stimulus on devices
	To analyze jitter or time dispersion (with SPA)
	To analyze bus stability (with SPA)

	Looking at State Events
	To trigger on the Nth occurrence of an event
	To store N samples of an event
	To trigger on a sequence of events
	To trigger when a program loop exits
	To find events that are too close or too far
	To count occurrences of an event between two events
	To trigger on a function call sequence
	To analyze bus occupation & bandwidth (with SPA)

	Exercising the Microprocessor (with the Emulation Probe)
	To initialize registers, access memory
	To use the emulation probe as a test tool

	Firmware Development
	Testing Boot Code (with the Emulation Probe)
	To download boot code
	To start or stop processor execution
	To stop processor execution using breakpoints
	To capture startup execution

	Making Driver Development Measurements
	To trigger on an 8-bit serial pattern
	To view serial data in parallel
	To capture driver execution (& view HW and SW)
	To capture execution up to a failure or halt
	To view bus activity
	To capture simple program messages
	To trigger on packet data (with DataComm Analysis)

	Making Interrupt Service Routine Measurements
	To capture interrupt frequency and type
	To measure interrupt latency and execution time
	To simulate particular interrupt sequences
	To view the occurrence rate of an event (with SPA)

	Software Development
	Analyzing Real-Time Software Execution
	To trace about a source line
	To trace function flow
	To trace callers of a function
	To trace execution within a function
	To measure function execution time
	To measure function execution time (with SPA)
	To omit monitor cycles from the trace
	To stop execution at a source line (in ROM)

	Analyzing Real-Time Variable Access
	To find NULL pointer de-references
	To trace a variable's values
	To find where variables are accessed from
	To trace before a variable value
	To stop execution on a corrupt variable

	Analyzing Real-Time Memory Usage
	To monitor stack or heap usage
	To find stack overflow or guarded memory access

	System Integration
	Making Cross-Domain Measurements
	To capture software execution when a scope triggers
	To generate patterns when a source line executes
	To arm one logic analyzer with another's trigger
	To arm a state machine with a timing machine trigger
	To arm an oscilloscope when the analyzer triggers

	Making System Profile Measurements
	To isolate the root cause of a performance bottleneck
	To simulate bus occupation and measure SW performance

	Isolating Critical Defects
	To capture SW execution on a setup or hold violation
	To trigger an oscilloscope when a source line executes

	Measurement Tips & Tricks
	Setting up 16715/16/17/18/19A triggers
	Setting up triggers in other logic analyzers
	Use trigger functions for easy measurement set up
	Modify trigger functions to build new measurements
	Know how processor execution affects measurements
	Getting the most out of trace memory
	If the trigger doesn't occur as expected

	Glossary
	Index

